Discrete Balayage and Boundary Sandpile

Hayk Aleksanyan

KTH Royal Institute of Technology

November 16, 2016

joint work with Henrik Shahgholian

Lattice growth models, internal DLA - an example

• Place $n \in \mathbb{N}$ identical particles at the origin of \mathbb{Z}^d $(d \ge 2)$.

- Place $n \in \mathbb{N}$ identical particles at the origin of \mathbb{Z}^d $(d \ge 2)$.
- One-by-one each of these *n* particles performs a simple symmetric random walk on Z^d until reaching an unoccupied site, where it stops.

- Place $n \in \mathbb{N}$ identical particles at the origin of \mathbb{Z}^d $(d \ge 2)$.
- One-by-one each of these *n* particles performs a simple symmetric random walk on Z^d until reaching an unoccupied site, where it stops.
- Question: What can we say about V_n ⊂ Z^d the (random) set of occupied sites ?

internal DLA

Figure: An occupied cluster on \mathbb{Z}^2 for $n = 10\ 000$.

internal DLA

Figure: An occupied cluster on \mathbb{Z}^2 for $n = 1\ 000\ 000$.

< ∃ >

∃►

internal DLA

Figure: An occupied cluster on \mathbb{Z}^2 for n = 1 000 000.

Figure: Closer look near the north_pole

Hayk Aleksanyan Discrete Balayage and Boundary Sandpile

伺 ト く ヨ ト く ヨ ト

Lawler, Bramson, Griffeat [Ann. Prob., '92]

Let $d \geq 2$ and fix any $\varepsilon > 0$. Then the inclusions $B_{n(1-\varepsilon)} \subset V_{\lfloor \omega_d n^d \rfloor} \subset B_{n(1+\varepsilon)}$ hold for n large enough with probability 1.

Lawler, Bramson, Griffeat [Ann. Prob., '92]

Let $d \geq 2$ and fix any $\varepsilon > 0$. Then the inclusions $B_{n(1-\varepsilon)} \subset V_{\lfloor \omega_d n^d \rfloor} \subset B_{n(1+\varepsilon)}$ hold for n large enough with probability 1.

Quantitative analysis of fluctuations by

Lawler, Bramson, Griffeat [Ann. Prob., '92]

Let $d \geq 2$ and fix any $\varepsilon > 0$. Then the inclusions $B_{n(1-\varepsilon)} \subset V_{\lfloor \omega_d n^d \rfloor} \subset B_{n(1+\varepsilon)}$ hold for n large enough with probability 1.

Quantitative analysis of fluctuations by

• Lawler [Ann. Prob., '95],

Lawler, Bramson, Griffeat [Ann. Prob., '92]

Let $d \geq 2$ and fix any $\varepsilon > 0$. Then the inclusions $B_{n(1-\varepsilon)} \subset V_{\lfloor \omega_d n^d \rfloor} \subset B_{n(1+\varepsilon)}$ hold for n large enough with probability 1.

Quantitative analysis of fluctuations by

- Lawler [Ann. Prob., '95],
- Jerison-Levine-Sheffield, [JAMS, '10],

Lawler, Bramson, Griffeat [Ann. Prob., '92]

Let $d \geq 2$ and fix any $\varepsilon > 0$. Then the inclusions $B_{n(1-\varepsilon)} \subset V_{\lfloor \omega_d n^d \rfloor} \subset B_{n(1+\varepsilon)}$ hold for n large enough with probability 1.

Quantitative analysis of fluctuations by

- Lawler [Ann. Prob., '95],
- Jerison-Levine-Sheffield, [JAMS, '10],
- Asselah-Gaudillière [Ann. Prob. '10]

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

• Start with $n \in \mathbb{N}$ identical chips (grains of sands) at the origin of \mathbb{Z}^d

伺 ト く ヨ ト く ヨ ト

- Start with $n \in \mathbb{N}$ identical chips (grains of sands) at the origin of \mathbb{Z}^d
- Call $x \in \mathbb{Z}^d$ unstable if it carries at least 2d chips.

- Start with $n \in \mathbb{N}$ identical chips (grains of sands) at the origin of \mathbb{Z}^d
- Call $x \in \mathbb{Z}^d$ unstable if it carries at least 2*d* chips.
- Any unstable site can topple by distributing 1 chip to each of its lattice neighbours (there are 2*d* in total).

- Start with $n \in \mathbb{N}$ identical chips (grains of sands) at the origin of \mathbb{Z}^d
- Call $x \in \mathbb{Z}^d$ unstable if it carries at least 2*d* chips.
- Any unstable site can topple by distributing 1 chip to each of its lattice neighbours (there are 2*d* in total).
- Toppling of unstable sites continue, until all vertices of \mathbb{Z}^d are stable (i.e. have at most 2d 1 chips).

- Start with $n \in \mathbb{N}$ identical chips (grains of sands) at the origin of \mathbb{Z}^d
- Call $x \in \mathbb{Z}^d$ unstable if it carries at least 2*d* chips.
- Any unstable site can topple by distributing 1 chip to each of its lattice neighbours (there are 2*d* in total).
- Toppling of unstable sites continue, until all vertices of Z^d are stable (i.e. have at most 2d − 1 chips).

Why Abelian?

• the final (stable) configuration

- Start with $n \in \mathbb{N}$ identical chips (grains of sands) at the origin of \mathbb{Z}^d
- Call $x \in \mathbb{Z}^d$ unstable if it carries at least 2*d* chips.
- Any unstable site can topple by distributing 1 chip to each of its lattice neighbours (there are 2*d* in total).
- Toppling of unstable sites continue, until all vertices of Z^d are stable (i.e. have at most 2d − 1 chips).

Why Abelian?

- the final (stable) configuration
- number of times a given vertex topples

- Start with $n \in \mathbb{N}$ identical chips (grains of sands) at the origin of \mathbb{Z}^d
- Call $x \in \mathbb{Z}^d$ unstable if it carries at least 2*d* chips.
- Any unstable site can topple by distributing 1 chip to each of its lattice neighbours (there are 2*d* in total).
- Toppling of unstable sites continue, until all vertices of Z^d are stable (i.e. have at most 2d − 1 chips).

Why Abelian?

- the final (stable) configuration
- number of times a given vertex topples

both are **independent** of the order in which the unstable sites are being toppled.

Abelian Sandpile model

This model was introduced by physicists as an example (model) of *self-organised criticality* in physical systems evolving into barely stable states (e.g. avalanches, earthquakes,...)

Abelian Sandpile model

This model was introduced by physicists as an example (model) of *self-organised criticality* in physical systems evolving into barely stable states (e.g. avalanches, earthquakes,...)

Self-organized criticality: An explanation of the 1/f noise P Bak, <u>C Tang</u>, K Wiesenfeld - Physical review letters, 1987 - APS Abstract We show that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point. Flicker noise, or 1/f noise, can be identified with the dynamics of the critical state. This picture also yields insight into the origin of fractal ... Cited by 7207 Related articles Web of Science: 4211 Cite Save

- 4 同 ト 4 ヨ ト 4 ヨ ト
Abelian Sandpile model

This model was introduced by physicists as an example (model) of *self-organised criticality* in physical systems evolving into barely stable states (e.g. avalanches, earthquakes,...)

Self-organized criticality: An explanation of the 1/f noise P Bak, <u>C Tang</u>, K Wiesenfeld - Physical review letters, 1987 - APS Abstract We show that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point. Flicker noise, or 1/f noise, can be identified with the dynamics of the critical state. This picture also yields insight into the origin of fractal ... Cited by 7207 Related articles Web of Science: 4211 Cite Save

There is a wealth of mathematics at the heart of this model.

- Viscosity theory of elliptic PDEs
- Appolonian circle packings
- Tropical geometry
- Sandpile groups
- etc.

・ 同 ト ・ ヨ ト ・ ヨ

ASM: large cluster

Figure: The limiting shape of the two-dimensional ASM on \mathbb{Z}^2 with initial 10 000 000 particles placed at the origin. Sites of \mathbb{Z}^2 having 0,1,2, or 3 number of chips are coloured by black, purple, red, and blue respectively.

Odometer

For each $x \in \mathbb{Z}^d$ let u(x) = number of times x has toppled during the entire life-time of the sandpile.

Odometer

For each $x \in \mathbb{Z}^d$ let u(x) = number of times x has toppled during the entire life-time of the sandpile.

u is well-defined thanks to Abelian property.

Odometer

For each $x \in \mathbb{Z}^d$ let u(x) = number of times x has toppled during the entire life-time of the sandpile. u is well-defined thanks to Abelian property.

Each toppling of $y \in \mathbb{Z}^d$ gives 1 chip to each of its neighbours.

Odometer

For each $x \in \mathbb{Z}^d$ let u(x) = number of times x has toppled during the entire life-time of the sandpile. u is well-defined thanks to Abelian property.

Each toppling of $y \in \mathbb{Z}^d$ gives 1 chip to each of its neighbours. Hence, each $x \in \mathbb{Z}^d$

• receives $\sum_{y \sim x} u(y)$ chips,

Odometer

For each $x \in \mathbb{Z}^d$ let u(x) = number of times x has toppled during the entire life-time of the sandpile. u is well-defined thanks to Abelian property.

Each toppling of $y \in \mathbb{Z}^d$ gives 1 chip to each of its neighbours. Hence, each $x \in \mathbb{Z}^d$

- receives $\sum_{y \sim x} u(y)$ chips,
- gives away $u(x) \times 2d$,

Odometer

For each $x \in \mathbb{Z}^d$ let u(x) = number of times x has toppled during the entire life-time of the sandpile. u is well-defined thanks to Abelian property.

Each toppling of $y \in \mathbb{Z}^d$ gives 1 chip to each of its neighbours. Hence, each $x \in \mathbb{Z}^d$

- receives $\sum_{y \sim x} u(y)$ chips,
- gives away $u(x) \times 2d$,
- the net gain is thus

$$\sum_{y \sim x} [u(y) - u(x)] = \Delta^1 u(x).$$

Odometer

For each $x \in \mathbb{Z}^d$ let u(x) = number of times x has toppled during the entire life-time of the sandpile. u is well-defined thanks to Abelian property.

Each toppling of $y\in\mathbb{Z}^d$ gives 1 chip to each of its neighbours. Hence, each $x\in\mathbb{Z}^d$

- receives $\sum_{y \sim x} u(y)$ chips,
- gives away $u(x) \times 2d$,
- the net gain is thus

$$\sum_{y \sim x} [u(y) - u(x)] = \Delta^1 u(x).$$

Hence for initial configuration of $n\delta_0$ chips, the final state $s : \mathbb{Z}^d \to \{0, 1, ..., 2d - 1\}$ is given by $\Delta^1 u(x) = s(x) - n\delta_0.$

Least action principle

If s is the stable configuration for n chips, and $u: \mathbb{Z}^d \to \mathbb{Z}_+$ is the odometer then we have

$$n\delta_0 + \Delta^1 u(x) \leq 2d - 1, \qquad x \in \mathbb{Z}^d.$$

If s is the stable configuration for n chips, and $u: \mathbb{Z}^d \to \mathbb{Z}_+$ is the odometer then we have

$$n\delta_0 + \Delta^1 u(x) \leq 2d - 1, \qquad x \in \mathbb{Z}^d.$$

Least Action principle (Fey-Levine-Peres; J. Stat. Phys. '10) $u = \min\{w : \mathbb{Z}^d \to \mathbb{Z}_+ : n\delta_0 + \Delta^1 w(x) \le 2d - 1, x \in \mathbb{Z}^d\}$ If s is the stable configuration for n chips, and $u: \mathbb{Z}^d \to \mathbb{Z}_+$ is the odometer then we have

$$n\delta_0 + \Delta^1 u(x) \leq 2d - 1, \qquad x \in \mathbb{Z}^d.$$

Each vertex does the **minimal** amount of work for stabilization.

< ∃ →

• For $n \in \mathbb{N}$ chips let u_n be the odometer, and set $h = n^{-1/d}$.

- For $n \in \mathbb{N}$ chips let u_n be the odometer, and set $h = n^{-1/d}$.
- (Scaling) $u_h(x) := h^2 u_n(h^{-1}x), \ s_h(x) = s_n(h^{-1}x)$ with $x \in h\mathbb{Z}^d$.

- For $n \in \mathbb{N}$ chips let u_n be the odometer, and set $h = n^{-1/d}$.
- (Scaling) $u_h(x) := h^2 u_n(h^{-1}x), \ s_h(x) = s_n(h^{-1}x)$ with $x \in h\mathbb{Z}^d$.
- We have $\Delta^h u_h(x) = s_h(x) h^{-d} \delta_0$ for all $x \in h\mathbb{Z}^d$.

- For $n \in \mathbb{N}$ chips let u_n be the odometer, and set $h = n^{-1/d}$.
- (Scaling) $u_h(x) := h^2 u_n(h^{-1}x)$, $s_h(x) = s_n(h^{-1}x)$ with $x \in h\mathbb{Z}^d$.
- We have $\Delta^h u_h(x) = s_h(x) h^{-d} \delta_0$ for all $x \in h\mathbb{Z}^d$.
- For fixed h > 0 and each $x \in h\mathbb{Z}^d$ extend u_h as $u_h \equiv u_h(x)$ in the cube $\left[x_1 \frac{h}{2}, x_1 + \frac{h}{2}\right) \times ... \times \left[x_d \frac{h}{2}, x_d + \frac{h}{2}\right]$.

- For $n \in \mathbb{N}$ chips let u_n be the odometer, and set $h = n^{-1/d}$.
- (Scaling) $u_h(x) := h^2 u_n(h^{-1}x)$, $s_h(x) = s_n(h^{-1}x)$ with $x \in h\mathbb{Z}^d$.
- We have $\Delta^h u_h(x) = s_h(x) h^{-d} \delta_0$ for all $x \in h\mathbb{Z}^d$.
- For fixed h > 0 and each $x \in h\mathbb{Z}^d$ extend u_h as $u_h \equiv u_h(x)$ in the cube $\left[x_1 \frac{h}{2}, x_1 + \frac{h}{2}\right) \times ... \times \left[x_d \frac{h}{2}, x_d + \frac{h}{2}\right]$.
- This extension preserves the discrete Laplacian, we still get $\Delta^h u_h(x) = s_h(x) h^{-d} \delta_0$ but now for all $x \in \mathbb{R}^d$.

There exist compactly supported, non-negative $u_0 \in C(\mathbb{R}^d \setminus \{0\})$, and $s \in L^{\infty}(\mathbb{R}^d)$ such that $u_h \to u_0$ locally uniformly in $\mathbb{R}^d \setminus \{0\}$ and $s_h \to s$ weak* in $L^{\infty}(\mathbb{R}^d)$. Moreover, $\Delta u_0 = s - \delta_0$ in a sense of distributions, $0 \leq s \leq 2d - 1$ and $\int_{\mathbb{R}^d} s(x) dx = 1$.

There exist compactly supported, non-negative $u_0 \in C(\mathbb{R}^d \setminus \{0\})$, and $s \in L^{\infty}(\mathbb{R}^d)$ such that $u_h \to u_0$ locally uniformly in $\mathbb{R}^d \setminus \{0\}$ and $s_h \to s$ weak* in $L^{\infty}(\mathbb{R}^d)$. Moreover, $\Delta u_0 = s - \delta_0$ in a sense of distributions, $0 \leq s \leq 2d - 1$ and $\int_{\mathbb{R}^d} s(x) dx = 1$.

the proof uses the least action principle, and viscosity theory of elliptic PDEs.

There exist compactly supported, non-negative $u_0 \in C(\mathbb{R}^d \setminus \{0\})$, and $s \in L^{\infty}(\mathbb{R}^d)$ such that $u_h \to u_0$ locally uniformly in $\mathbb{R}^d \setminus \{0\}$ and $s_h \to s$ weak* in $L^{\infty}(\mathbb{R}^d)$. Moreover, $\Delta u_0 = s - \delta_0$ in a sense of distributions, $0 \leq s \leq 2d - 1$ and $\int_{\mathbb{R}^d} s(x) dx = 1$.

the proof uses the least action principle, and viscosity theory of elliptic PDEs.

Regularity of the boundary of ASM (A. - Shahgholian, arXiv '16)

The (free) boundary of the scaling limit of ASM is locally a Lipschitz graph.

There exist compactly supported, non-negative $u_0 \in C(\mathbb{R}^d \setminus \{0\})$, and $s \in L^{\infty}(\mathbb{R}^d)$ such that $u_h \to u_0$ locally uniformly in $\mathbb{R}^d \setminus \{0\}$ and $s_h \to s$ weak* in $L^{\infty}(\mathbb{R}^d)$. Moreover, $\Delta u_0 = s - \delta_0$ in a sense of distributions, $0 \leq s \leq 2d - 1$ and $\int_{\mathbb{R}^d} s(x) dx = 1$.

the proof uses the least action principle, and viscosity theory of elliptic PDEs.

Regularity of the boundary of ASM (A. - Shahgholian, arXiv '16)

The (free) boundary of the scaling limit of ASM is locally a Lipschitz graph.

the proof uses the least action principle, and (combinatorial) moving plane techniques.

< ∃ →

A "slight" change in the obstacle problem for ASM

$$u(x) := \inf\{w : \mathbb{Z}^d \to \mathbb{R}_+ : n\delta_0 + \Delta^1 w(x) \le 1\},$$

where n > 0 is a continuous mass now, and

$$\Delta^1 w(x) = \frac{1}{2d} \sum_{y \sim x} w(y) - w(x).$$

A B M A B M

A "slight" change in the obstacle problem for ASM

$$u(x) := \inf\{w : \mathbb{Z}^d \to \mathbb{R}_+ : n\delta_0 + \Delta^1 w(x) \le 1\},$$

where n > 0 is a continuous mass now, and

$$\Delta^1 w(x) = \frac{1}{2d} \sum_{y \sim x} w(y) - w(x).$$

Divisible sandpile (Levine-Peres '09; Zidarov '90)

A "slight" change in the obstacle problem for ASM

$$u(x) := \inf\{w : \mathbb{Z}^d \to \mathbb{R}_+ : n\delta_0 + \Delta^1 w(x) \le 1\},$$

where n > 0 is a continuous mass now, and

$$\Delta^1 w(x) = \frac{1}{2d} \sum_{y \sim x} w(y) - w(x).$$

Divisible sandpile (Levine-Peres '09; Zidarov '90)

A lattice site is full, if it carries mass at least 1.

A "slight" change in the obstacle problem for ASM

$$u(x) := \inf\{w : \mathbb{Z}^d \to \mathbb{R}_+ : n\delta_0 + \Delta^1 w(x) \le 1\},$$

where n > 0 is a continuous mass now, and

$$\Delta^1 w(x) = \frac{1}{2d} \sum_{y \sim x} w(y) - w(x).$$

Divisible sandpile (Levine-Peres '09; Zidarov '90)

A lattice site is full, if it carries mass at least 1. A full site can *topple* by **evenly** distributing its excess from 1 among its 2*d* lattice neighbours.

Figure: The redistribution of mass 100 000 by divisible sandpile.

- **→** → **→**

3) 3

Divisible sandpile and Quadrature domains

Hayk Aleksanyan Discrete Balayage and Boundary Sandpile

Divisible sandpile and Quadrature domains

Fix $x_i \in \mathbb{R}^d$ and $\lambda_i > 0$, i = 1, ..., k.

Fix $x_i \in \mathbb{R}^d$ and $\lambda_i > 0$, i = 1, ..., k. A domain $D \subset \mathbb{R}^d$ is called a **quadrature domain**, if for all integrable *super-harmonic* functions h one has

$$\int_D h(x) dx \leq \sum_{i=1}^k \lambda_i h(x_i).$$

Fix $x_i \in \mathbb{R}^d$ and $\lambda_i > 0$, i = 1, ..., k. A domain $D \subset \mathbb{R}^d$ is called a **quadrature domain**, if for all integrable *super-harmonic* functions h one has

$$\int_D h(x) dx \leq \sum_{i=1}^k \lambda_i h(x_i).$$

Theorem (Levine-Peres [J. Anal. Math, '10])

For a "sufficiently nice" initial density the scaling limit of the divisible sandpile is a quadrature domain.

Boundary sandpile (BS): Initial motivation

Generate a quadrature surface via sandpile dynamics.

Generate a quadrature surface via sandpile dynamics. That is, given a measure μ on \mathbb{R}^d find a domain $D \subset \mathbb{R}^d$ s.t.

$$\int h(x)d\mu(x) = \int_{\partial D} h(x)d\mathcal{H}_{\partial D},$$

for all harmonic functions h in \overline{D} .

Generate a quadrature surface via sandpile dynamics. That is, given a measure μ on \mathbb{R}^d find a domain $D \subset \mathbb{R}^d$ s.t.

$$\int h(x)d\mu(x) = \int_{\partial D} h(x)d\mathcal{H}_{\partial D},$$

for all harmonic functions h in \overline{D} .

Expressed differently (Shahgholian, [Ark. Math. '94]) for a given measure μ find a domain D where the problem

$$\Delta u=-\mu \,\, {
m in}\,\, D,\,\, u=0 \,\, {
m on}\,\, \partial D\,\, {
m and}\,\, {\partial u\over\partial
u}=-1\,\, {
m on}\,\, \partial D,$$

has a solution.
< ∃ →

- ∢ ≣ ▶

Fix a mass distribution $\mu_0 : \mathbb{Z}^d \to \mathbb{R}_+$ with *finite support* and *bounded total mass*, and set a threshold $\kappa_0 > 0$.

• Start with $V_0 := \operatorname{supp} \mu_0$ and $u_0 \equiv 0$ on \mathbb{Z}^d , and inductively define a triple (V_k, u_k, μ_k) , k = 1, 2, ...

- Start with $V_0 := \operatorname{supp} \mu_0$ and $u_0 \equiv 0$ on \mathbb{Z}^d , and inductively define a triple (V_k, u_k, μ_k) , k = 1, 2, ...
- At discrete time k ≥ 0 call a given x ∈ Z^d unstable, if either of the following holds:

- Start with $V_0 := \operatorname{supp} \mu_0$ and $u_0 \equiv 0$ on \mathbb{Z}^d , and inductively define a triple (V_k, u_k, μ_k) , k = 1, 2, ...
- At discrete time k ≥ 0 call a given x ∈ Z^d unstable, if either of the following holds:

• (a)
$$x \in \overset{\circ}{V}_k, \ \mu_k(x) > 0$$

- Start with $V_0 := \operatorname{supp} \mu_0$ and $u_0 \equiv 0$ on \mathbb{Z}^d , and inductively define a triple (V_k, u_k, μ_k) , k = 1, 2, ...
- At discrete time k ≥ 0 call a given x ∈ Z^d unstable, if either of the following holds:

• (a)
$$x\in \overset{\circ}{V}_k,\; \mu_k(x)>$$
0,

• (b)
$$x \in \partial V_k, \mu_k(x) > \kappa_0.$$

Fix a mass distribution $\mu_0 : \mathbb{Z}^d \to \mathbb{R}_+$ with *finite support* and *bounded total mass*, and set a threshold $\kappa_0 > 0$.

- Start with $V_0 := \operatorname{supp} \mu_0$ and $u_0 \equiv 0$ on \mathbb{Z}^d , and inductively define a triple (V_k, u_k, μ_k) , k = 1, 2, ...
- At discrete time k ≥ 0 call a given x ∈ Z^d unstable, if either of the following holds:

• (a)
$$x \in \overset{\,\,{}_\circ}{V}_k, \ \mu_k(x) > 0$$
,

• (b)
$$x \in \partial V_k, \mu_k(x) > \kappa_0.$$

• Topple an unstable site by evenly distributing **all** its mass equally among its 2*d* lattice neighbours.

- Start with $V_0 := \operatorname{supp} \mu_0$ and $u_0 \equiv 0$ on \mathbb{Z}^d , and inductively define a triple (V_k, u_k, μ_k) , k = 1, 2, ...
- At discrete time k ≥ 0 call a given x ∈ Z^d unstable, if either of the following holds:

• (a)
$$x \in \breve{V}_k, \ \mu_k(x) > 0$$
,

• (b)
$$x \in \partial V_k, \mu_k(x) > \kappa_0.$$

- Topple an unstable site by evenly distributing **all** its mass equally among its 2*d* lattice neighbours.
- If there are no unstable sites, stop (will **never** stop except for trivial cases).

- Start with $V_0 := \operatorname{supp} \mu_0$ and $u_0 \equiv 0$ on \mathbb{Z}^d , and inductively define a triple (V_k, u_k, μ_k) , k = 1, 2, ...
- At discrete time k ≥ 0 call a given x ∈ Z^d unstable, if either of the following holds:

• (a)
$$x\in \breve{V}_k,\; \mu_k(x)>$$
0,

• (b)
$$x \in \partial V_k, \mu_k(x) > \kappa_0.$$

- Topple an unstable site by evenly distributing **all** its mass equally among its 2*d* lattice neighbours.
- If there are no unstable sites, stop (will **never** stop except for trivial cases).
- V_k shows the set of visited sites, u_k(x) is the amount of emissions from x ∈ Z^d, and μ_k is the distribution - all computed after the k-th toppling has been invoked (times before k are included).

For all k = 0, 1, ... we get $\Delta^1 u_k(x) = \mu_k(x) - \mu_0(x)$, $x \in \mathbb{Z}^d$.

э

For all
$$k = 0, 1, ...$$
 we get $\Delta^1 u_k(x) = \mu_k(x) - \mu_0(x)$, $x \in \mathbb{Z}^d$.

Let $T = \{x_k\}_{k=1}^{\infty} \subset \mathbb{Z}^d$ be any, s.t. all $x \in \mathbb{Z}^d$ appear in T infinitely often. Then, one-by-one toppling vertices of T produces a stable configuration in the limit.

For all
$$k = 0, 1, ...$$
 we get $\Delta^1 u_k(x) = \mu_k(x) - \mu_0(x)$, $x \in \mathbb{Z}^d$.

Let $T = \{x_k\}_{k=1}^{\infty} \subset \mathbb{Z}^d$ be any, s.t. all $x \in \mathbb{Z}^d$ appear in T infinitely often. Then, one-by-one toppling vertices of T produces a stable configuration in the limit. In particular, the all mass is being **sweeped out ("balayaged")** to the combinatorial free boundary.

For all
$$k = 0, 1, ...$$
 we get $\Delta^1 u_k(x) = \mu_k(x) - \mu_0(x)$, $x \in \mathbb{Z}^d$.

Let $T = \{x_k\}_{k=1}^{\infty} \subset \mathbb{Z}^d$ be any, s.t. all $x \in \mathbb{Z}^d$ appear in T infinitely often. Then, one-by-one toppling vertices of T produces a stable configuration in the limit. In particular, the all mass is being **sweeped out ("balayaged")** to the combinatorial free boundary.

Proof: Show that $\#\partial V_k$ is bounded above independently of k.

For all
$$k = 0, 1, ...$$
 we get $\Delta^1 u_k(x) = \mu_k(x) - \mu_0(x)$, $x \in \mathbb{Z}^d$.

Let $T = \{x_k\}_{k=1}^{\infty} \subset \mathbb{Z}^d$ be any, s.t. all $x \in \mathbb{Z}^d$ appear in T infinitely often. Then, one-by-one toppling vertices of T produces a stable configuration in the limit. In particular, the all mass is being **sweeped out ("balayaged")** to the combinatorial free boundary.

Proof: Show that $\#\partial V_k$ is bounded above independently of k.

Abelian property

For any two toppling sequences T_1 and T_2 as above, the final configurations coincide, i.e. the model is **Abelian**.

For all
$$k = 0, 1, ...$$
 we get $\Delta^1 u_k(x) = \mu_k(x) - \mu_0(x), x \in \mathbb{Z}^d$.

Let $T = \{x_k\}_{k=1}^{\infty} \subset \mathbb{Z}^d$ be any, s.t. all $x \in \mathbb{Z}^d$ appear in T infinitely often. Then, one-by-one toppling vertices of T produces a stable configuration in the limit. In particular, the all mass is being **sweeped out ("balayaged")** to the combinatorial free boundary.

Proof: Show that $\#\partial V_k$ is bounded above independently of k.

Abelian property

For any two toppling sequences T_1 and T_2 as above, the final configurations coincide, i.e. the model is **Abelian**.

Proof: If $T_1 = \{x_k\}_{k=1}^{\infty}$, we show (by a careful induction) that odometers satisfy $u_2(x_k) \ge u_{1,k}(x_k)$ for all k.

For all
$$k = 0, 1, ...$$
 we get $\Delta^1 u_k(x) = \mu_k(x) - \mu_0(x), x \in \mathbb{Z}^d$.

Let $T = \{x_k\}_{k=1}^{\infty} \subset \mathbb{Z}^d$ be any, s.t. all $x \in \mathbb{Z}^d$ appear in T infinitely often. Then, one-by-one toppling vertices of T produces a stable configuration in the limit. In particular, the all mass is being **sweeped out ("balayaged")** to the combinatorial free boundary.

Proof: Show that $\#\partial V_k$ is bounded above independently of k.

Abelian property

For any two toppling sequences T_1 and T_2 as above, the final configurations coincide, i.e. the model is **Abelian**.

Proof: If $T_1 = \{x_k\}_{k=1}^{\infty}$, we show (by a careful induction) that odometers satisfy $u_2(x_k) \ge u_{1,k}(x_k)$ for all k.

Note: Abelian property is **NOT** automatic; there are non-Abelian sandpiles [Fey-den Boer, Liu; J. Cell. Automata '11].

Boundary sandpile: how does it look like?

Boundary sandpile: how does it look like?

Boundary sandpile: how does it look like?

Figure: Final configuration of the BS on the left, with initial mass of 1 000 000 concentrated at the origin of \mathbb{Z}^2 and boundary capacity equal to 1 000. The odometer is on the right. Warmer colors (starting from dark red) have larger numerical values than the cooler ones (terminating at dark blue). The odometer develops a singularity at the source.

< E

(i) $V \subset \mathbb{Z}^d$ is finite and $\mathrm{supp}\mu_0 \subset V$,

< E

(i) $V \subset \mathbb{Z}^d$ is finite and $\operatorname{supp} \mu_0 \subset V$, (ii) $u: V \to \mathbb{R}_+$ is a function satisfying

$$\begin{cases} \Delta^1 u = -\mu_0, & \text{ in } \overset{\circ}{V}, \\ u = 0, & \text{ on } \partial V, \\ \mu_0 + \Delta^1 u \le \kappa_0, & \text{ on } \partial V. \end{cases}$$

伺 ト く ヨ ト く ヨ ト

(i) $V \subset \mathbb{Z}^d$ is finite and $\operatorname{supp} \mu_0 \subset V$, (ii) $u: V \to \mathbb{R}_+$ is a function satisfying

$$\begin{cases} \Delta^1 u = -\mu_0, & \text{ in } \overset{\circ}{V}, \\ u = 0, & \text{ on } \partial V, \\ \mu_0 + \Delta^1 u \le \kappa_0, & \text{ on } \partial V. \end{cases}$$

Theorem

Let V_0 be the set of visited sites for $BS(\mu_0, \kappa_0)$. Then, V_0 is the **intersection** of all $V \subset \mathbb{Z}^d$ for which there is a function u s.t. the pair (V, u) is stabilizing.

(i) $V \subset \mathbb{Z}^d$ is finite and $\operatorname{supp} \mu_0 \subset V$, (ii) $u: V \to \mathbb{R}_+$ is a function satisfying

$$\begin{cases} \Delta^1 u = -\mu_0, & \text{ in } \overset{\circ}{V}, \\ u = 0, & \text{ on } \partial V, \\ \mu_0 + \Delta^1 u \le \kappa_0, & \text{ on } \partial V. \end{cases}$$

Theorem

Let V_0 be the set of visited sites for $BS(\mu_0, \kappa_0)$. Then, V_0 is the **intersection** of all $V \subset \mathbb{Z}^d$ for which there is a function u s.t. the pair (V, u) is stabilizing.

Reformulation in terms of a discrete obstacle problem

If *u* is the odometer for $BS(\mu_0, \kappa_0)$ then

$$u = \inf\{w : \mathbb{Z}^d \to \mathbb{R}_+ : \ \mu_0 + \Delta^1 w \le \kappa_0 \mathbb{I}_{\partial\{w > 0\}} \text{ on } \mathbb{Z}^d\}.$$

< ∃ →

Consider $BS(n\delta_0, \kappa_0)$ and let (V, u) be the stabilizing pair.

Comparison with sub-solutions

Fix $B \subset V$ with origin in its interior and let $v : B \to \mathbb{R}$ satisfy

$$\Delta^1 v \ge -n\delta_0$$
 in $\overset{\circ}{B}$, $v = 0$ on ∂B and $\Delta^1 v > \kappa_0$ on ∂B .

Consider $BS(n\delta_0, \kappa_0)$ and let (V, u) be the stabilizing pair.

Comparison with sub-solutions

Fix $B \subset V$ with origin in its interior and let $v : B \to \mathbb{R}$ satisfy

$$\Delta^1 v \ge -n\delta_0$$
 in $\overset{\circ}{B}$, $v = 0$ on ∂B and $\Delta^1 v > \kappa_0$ on ∂B .

Then, $\partial B \cap \partial V = \emptyset$, i.e. sub-solutions stay strictly inside.

Consider $BS(n\delta_0, \kappa_0)$ and let (V, u) be the stabilizing pair.

Comparison with sub-solutions

Fix $B \subset V$ with origin in its interior and let $v : B \to \mathbb{R}$ satisfy

$$\Delta^1 v \ge -n\delta_0$$
 in $\overset{\circ}{B}$, $v = 0$ on ∂B and $\Delta^1 v > \kappa_0$ on ∂B .

Then, $\partial B \cap \partial V = \emptyset$, i.e. sub-solutions stay strictly inside.

Proof: For w := u - v we get $\Delta^1 w \leq 0$ in $\overset{\circ}{B}$ and $w \geq 0$ on ∂B . Discrete maximum principle implies $\min_B w \geq \min_{\partial B} w \geq 0$. Hence, if $\exists x_0 \in \partial B \cap \partial V$, then $\kappa_0 < \Delta^1 v(x_0) \leq \Delta^1 u(x_0) \leq \kappa_0$, a contradiction. \Box

Consider $BS(n\delta_0, \kappa_0)$ and let (V, u) be the stabilizing pair.

Comparison with sub-solutions

Fix $B \subset V$ with origin in its interior and let $v : B \to \mathbb{R}$ satisfy

$$\Delta^1 v \geq -n\delta_0$$
 in $\overset{\circ}{B}$, $v = 0$ on ∂B and $\Delta^1 v > \kappa_0$ on ∂B .

Then, $\partial B \cap \partial V = \emptyset$, i.e. sub-solutions stay strictly inside.

Proof: For w := u - v we get $\Delta^1 w \le 0$ in $\overset{\circ}{B}$ and $w \ge 0$ on ∂B . Discrete maximum principle implies $\min_B w \ge \min_{\partial B} w \ge 0$. Hence, if $\exists x_0 \in \partial B \cap \partial V$, then $\kappa_0 < \Delta^1 v(x_0) \le \Delta^1 u(x_0) \le \kappa_0$, a contradiction. \Box

To estimate the growth of the visiting sites, compare it with a controllable sub-solution.

< ∃ →

For R > 0 let G_R be the Green's function (pole at the origin) for the discrete ball Z_R .

For R > 0 let G_R be the Green's function (pole at the origin) for the discrete ball Z_R .

Laplacian of G_R

There exists R_0 depending on dimension d and $0 < c_1 < C_1$ depending on d and R_0 s.t.

$$c_1 R^{1-d} < \Delta^1 G_R(x) < C_1 R^{1-d}$$
 for all $x \in \partial Z_R$.

For R > 0 let G_R be the Green's function (pole at the origin) for the discrete ball Z_R .

Laplacian of G_R

There exists R_0 depending on dimension d and $0 < c_1 < C_1$ depending on d and R_0 s.t.

$$c_1 R^{1-d} < \Delta^1 G_R(x) < C_1 R^{1-d}$$
 for all $x \in \partial Z_R$.

Proof: Write $G_R(x) = g(x, 0) - \mathbb{E}^x[g(S_{\tau_R}, 0)]$, where g(x, y) is the fundamental solution of Δ^1 on $\mathbb{Z}^d \times \mathbb{Z}^d$, and τ_R is the first exit time from $\overset{\circ}{Z_R}$ of a simple random walk started at x. Use that the walk will exit Z_R in finite time with probability 1, then apply the asymptotics of g.

< ∃ →

• Comparison with Green's function of a ball , shows that the growth of $BS(n\delta_0, \kappa)$ is of size R where $\kappa_0 \simeq nR^{1-d}$,
Growth of the model for a single source

• Comparison with Green's function of a ball , shows that the growth of $BS(n\delta_0, \kappa)$ is of size R where $\kappa_0 \simeq nR^{1-d}$, i.e. the scale of the model is of order $n^{1/d}$.

Growth of the model for a single source

- Comparison with Green's function of a ball, shows that the growth of $BS(n\delta_0, \kappa)$ is of size R where $\kappa_0 \simeq nR^{1-d}$, i.e. the scale of the model is of order $n^{1/d}$.
- The minimality principle principle implies monotone and unbounded growth for a model $BS(n\delta_0, n^{1/d})$.

- Comparison with Green's function of a ball, shows that the growth of $BS(n\delta_0, \kappa)$ is of size R where $\kappa_0 \simeq nR^{1-d}$, i.e. the scale of the model is of order $n^{1/d}$.
- The minimality principle principle implies monotone and unbounded growth for a model $BS(n\delta_0, n^{1/d})$.
- Discrete Harnack implies **non-degeneracy**, i.e. for any $r_0 > 0$ there is a constant $c_0 > 0$ depending on r_0 and d such that for any n > 1 and each $x_0 \in \partial V_n$ with $\operatorname{dist}(x_0, \partial V_n) \ge r_0 n^{1/d}$ one has $u_n(x_0) \ge c_0 n^{2/d}$.

- Comparison with Green's function of a ball , shows that the growth of $BS(n\delta_0, \kappa)$ is of size R where $\kappa_0 \simeq nR^{1-d}$, i.e. the scale of the model is of order $n^{1/d}$.
- The minimality principle principle implies monotone and unbounded growth for a model $BS(n\delta_0, n^{1/d})$.
- Discrete Harnack implies **non-degeneracy**, i.e. for any $r_0 > 0$ there is a constant $c_0 > 0$ depending on r_0 and d such that for any n > 1 and each $x_0 \in \partial V_n$ with $\operatorname{dist}(x_0, \partial V_n) \ge r_0 n^{1/d}$ one has $u_n(x_0) \ge c_0 n^{2/d}$. The meaning of this, is that the odometers do not **flatten out**.

Lipschitz bounds

Hayk Aleksanyan Discrete Balayage and Boundary Sandpile

□ ▶ ▲ 臣 ▶ ▲

Э

Consider $BS(n\delta_0, n^{1/d})$, and let u_n be the **odometer** and V_n be the set of **visited sites**.

Consider $BS(n\delta_0, n^{1/d})$, and let u_n be the **odometer** and V_n be the set of **visited sites**.

Using random walk counterpart of the problem, and known asymptotic bounds for (discrete) fundamental solutions we get

Gradient bounds in annulus

Fix $r_0 > 0$. There is a constant $C = C(r_0) > 0$ such that for any n > 1 one has

$$|u_n(x)-u_n(y)|\leq Cn^{1/d},$$

for any $x, y \in V_n$ with $x \sim y$ and $r_0 n^{1/d} \leq |x| \leq 2r_0 n^{1/d}$.

Uniform Lipschitz estimate away from the origin

For any $r_0 > 0$ there exists a constant $C = C(r_0) > 0$ s.t. for any n > 1 and each $x, y \in V_n$ with $|x|, |y| > r_0 n^{1/d}$ one has $|u_n(x) - u_n(y)| \le C n^{1/d} |x - y|$.

Lipschitz bounds

Uniform Lipschitz estimate away from the origin

For any $r_0 > 0$ there exists a constant $C = C(r_0) > 0$ s.t. for any n > 1 and each $x, y \in V_n$ with $|x|, |y| > r_0 n^{1/d}$ one has $|u_n(x) - u_n(y)| \le C n^{1/d} |x - y|$.

Proof: The discrete derivative $\partial_i^+ u(x) := u(x + e_i) - u(x)$ is Δ^1 -harmonic in

$$V_{n,0} := \{x \in V_n : |x| \ge r_0 n^{1/d}, \operatorname{dist}(x, \partial V_n) \ge 2\}.$$

Uniform Lipschitz estimate away from the origin

For any $r_0 > 0$ there exists a constant $C = C(r_0) > 0$ s.t. for any n > 1 and each $x, y \in V_n$ with $|x|, |y| > r_0 n^{1/d}$ one has $|u_n(x) - u_n(y)| \le C n^{1/d} |x - y|$.

Proof: The discrete derivative $\partial_i^+ u(x) := u(x + e_i) - u(x)$ is Δ^1 -harmonic in

$$V_{n,0} := \{ x \in V_n : |x| \ge r_0 n^{1/d}, \operatorname{dist}(x, \partial V_n) \ge 2 \}.$$

By discrete maximum principle + gradient bounds in the annulus + stability of the sandpile, we get

$$|\partial_i^+ u(x)| \leq C n^{1/d}$$
 for $x \in V_{n,0}$.

Now, for any $x, y \in V_n$ fix a path $x = X_0 \sim ... \sim X_k = y$ through $V_{n,0}$, with $k \asymp |x - y|$, and apply 1-step Lipschitz bound.

Scaled odometers are uniformly Lipschitz away from the origin Set $h = n^{-1/d}$ and $u_h(x) := h^2 u_n(h^{-1}x), x \in h\mathbb{Z}^d$. Then $|u_h(x) - u_h(y)| \le C_{r_0}|x - y|$ for all $x, y \in h\mathbb{Z}^d$ with $|x|, |y| > r_0$. Scaled odometers are uniformly Lipschitz away from the origin

Set $h = n^{-1/d}$ and $u_h(x) := h^2 u_n(h^{-1}x)$, $x \in h\mathbb{Z}^d$. Then

$$|u_h(x) - u_h(y)| \leq C_{r_0}|x - y|$$

for all $x, y \in h\mathbb{Z}^d$ with $|x|, |y| > r_0$.

 This eventually implies convergence of the sandpiles along subsequences as (mesh-size) h → 0. Scaled odometers are uniformly Lipschitz away from the origin

Set $h = n^{-1/d}$ and $u_h(x) := h^2 u_n(h^{-1}x)$, $x \in h\mathbb{Z}^d$. Then

$$|u_h(x) - u_h(y)| \leq C_{r_0}|x - y|$$

for all $x, y \in h\mathbb{Z}^d$ with $|x|, |y| > r_0$.

- This eventually implies convergence of the sandpiles along subsequences as (mesh-size) h → 0.
- We do NOT know if the limit is unique.

Hayk Aleksanyan Discrete Balayage and Boundary Sandpile

Let S be the set of **mirror symmetry** hyperplanes of the cube $[0,1]^d$, Elements of S are the hyperplanes (d^2 in total)

 $\{x_i = 1/2\}, \ \{x_i = x_j\} \text{ and } \{x_i = -x_j\} \text{ with } 1 \le i \ne j \le d.$

Let S be the set of **mirror symmetry** hyperplanes of the cube $[0,1]^d$, Elements of S are the hyperplanes (d^2 in total)

 $\{x_i = 1/2\}, \ \{x_i = x_j\} \text{ and } \{x_i = -x_j\} \text{ with } 1 \le i \ne j \le d.$

Theorem

Let (V, u) be the stabilizing pair of $BS(n\delta_0, \kappa_0)$ and $T \in S$ be any. Then, for any $X_1, X_2 \in \mathbb{Z}^d$ s.t. $X_1 - X_2 \neq 0$ is orthogonal to T we have

$$u(X_1) \ge u(X_2) \iff |X_1| \le |X_2|.$$

The same is true for Abelian Sandpile model (with a simpler proof).

Let S be the set of **mirror symmetry** hyperplanes of the cube $[0,1]^d$, Elements of S are the hyperplanes (d^2 in total)

 $\{x_i = 1/2\}, \ \{x_i = x_j\} \text{ and } \{x_i = -x_j\} \text{ with } 1 \le i \ne j \le d.$

Theorem

Let (V, u) be the stabilizing pair of $BS(n\delta_0, \kappa_0)$ and $T \in S$ be any. Then, for any $X_1, X_2 \in \mathbb{Z}^d$ s.t. $X_1 - X_2 \neq 0$ is orthogonal to T we have

$$u(X_1) \geq u(X_2) \iff |X_1| \leq |X_2|.$$

The same is true for Abelian Sandpile model (with a simpler proof).

The intuition: There is less "action" away from the source.

Hayk Aleksanyan Discrete Balayage and Boundary Sandpile

< E

• Assuming $|X_1| < |X_2|$ need to prove $u(X_2) \le u(X_1)$.

伺 ト イヨト イヨト

- Assuming $|X_1| < |X_2|$ need to prove $u(X_2) \le u(X_1)$.
- Put T "in between" X_1 and X_2 (on equal distance).

/₽ ► < ∃ ►

- Assuming $|X_1| < |X_2|$ need to prove $u(X_2) \le u(X_1)$.
- Put T "in between" X_1 and X_2 (on equal distance).
- Reflect \mathbb{Z}^d with respect to T_0 the translate of T, and define reflected domain V^* , and odometer $u^*(x) = u(x^*)$.

- Assuming $|X_1| < |X_2|$ need to prove $u(X_2) \le u(X_1)$.
- Put T "in between" X_1 and X_2 (on equal distance).
- Reflect \mathbb{Z}^d with respect to T_0 the translate of T, and define reflected domain V^* , and odometer $u^*(x) = u(x^*)$.
- Set *H*_− to be the closed half-space determined by *T*₀ containing the origin, and let *H*₊ := ℝ^d \ *H*_−.

- Assuming $|X_1| < |X_2|$ need to prove $u(X_2) \le u(X_1)$.
- Put T "in between" X_1 and X_2 (on equal distance).
- Reflect \mathbb{Z}^d with respect to T_0 the translate of T, and define reflected domain V^* , and odometer $u^*(x) = u(x^*)$.
- Set *H*[−] to be the closed half-space determined by *T*₀ containing the origin, and let *H*₊ := ℝ^d \ *H*_−.
- Define

$$u_T(x) = egin{cases} u(x), & ext{if } x \in V_- := \mathcal{H}_- \cap V, \ \min\{u(x), u^*(x)\}, & ext{if } x \in V_+ := \mathcal{H}_+ \cap V \cap V^*. \end{cases}$$

- Assuming $|X_1| < |X_2|$ need to prove $u(X_2) \le u(X_1)$.
- Put T "in between" X_1 and X_2 (on equal distance).
- Reflect \mathbb{Z}^d with respect to T_0 the translate of T, and define reflected domain V^* , and odometer $u^*(x) = u(x^*)$.
- Set *H*[−] to be the closed half-space determined by *T*₀ containing the origin, and let *H*₊ := ℝ^d \ *H*_−.
- Define

$$u_{\mathcal{T}}(x) = \begin{cases} u(x), & \text{if } x \in V_{-} := \mathcal{H}_{-} \cap V, \\ \min\{u(x), u^{*}(x)\}, & \text{if } x \in V_{+} := \mathcal{H}_{+} \cap V \cap V^{*}. \end{cases}$$

• Use minimality principle (or Least Action for ASM) to prove $u(x) \le u_T(x)$ (delicate combinatorics)

伺 ト イ ヨ ト イ ヨ ト

- Assuming $|X_1| < |X_2|$ need to prove $u(X_2) \le u(X_1)$.
- Put T "in between" X_1 and X_2 (on equal distance).
- Reflect \mathbb{Z}^d with respect to T_0 the translate of T, and define reflected domain V^* , and odometer $u^*(x) = u(x^*)$.
- Set *H*[−] to be the closed half-space determined by *T*₀ containing the origin, and let *H*₊ := ℝ^d \ *H*_−.
- Define

$$u_{\mathcal{T}}(x) = \begin{cases} u(x), & \text{if } x \in V_- := \mathcal{H}_- \cap V, \\ \min\{u(x), u^*(x)\}, & \text{if } x \in V_+ := \mathcal{H}_+ \cap V \cap V^*. \end{cases}$$

- Use minimality principle (or Least Action for ASM) to prove $u(x) \le u_T(x)$ (delicate combinatorics)
- Since $X_2 \in \mathcal{H}_+$ we get $u(X_2) \le u_T(X_2) = \min\{u(X_1), u(X_2)\} \le u(X_1)$ q.e.d.

∃ >

 The directional monotonicity of discrete odometers is inherited by (any) scaling limit u₀ in continuous space.

- The directional monotonicity of discrete odometers is inherited by (any) scaling limit u₀ in continuous space.
- Namely, the odometer u₀ is increasing "toward the origin" on directions N := {e_i, e_i + e_j, e_i − e_j, 1 ≤ i ≠ j ≤ d}.

- The directional monotonicity of discrete odometers is inherited by (any) scaling limit u₀ in continuous space.
- Namely, the odometer u₀ is increasing "toward the origin" on directions N := {e_i, e_i + e_j, e_i − e_j, 1 ≤ i ≠ j ≤ d}.
- At any point $x_0 \in \partial \{u_0 > 0\}$ on the free boundary, we can extract *d* linearly independent directions from \mathcal{N} along which u_0 is monotone.

- The directional monotonicity of discrete odometers is inherited by (any) scaling limit u₀ in continuous space.
- Namely, the odometer u₀ is increasing "toward the origin" on directions N := {e_i, e_i + e_j, e_i − e_j, 1 ≤ i ≠ j ≤ d}.
- At any point $x_0 \in \partial \{u_0 > 0\}$ on the free boundary, we can extract *d* linearly independent directions from \mathcal{N} along which u_0 is monotone.
- The (truncated) double-cone spanned by this direction vectors and having vertex at x₀ has no points of the free boundary in its interior.

- The directional monotonicity of discrete odometers is inherited by (any) scaling limit u₀ in continuous space.
- Namely, the odometer u₀ is increasing "toward the origin" on directions N := {e_i, e_i + e_j, e_i − e_j, 1 ≤ i ≠ j ≤ d}.
- At any point $x_0 \in \partial \{u_0 > 0\}$ on the free boundary, we can extract *d* linearly independent directions from \mathcal{N} along which u_0 is monotone.
- The (truncated) double-cone spanned by this direction vectors and having vertex at x₀ has no points of the free boundary in its interior.
- Since the free boundary satisfies the double-cone condition, it is a Lipschitz graph locally.

Works the same for Abelian Sandpile, and Boundary Sandpile.

Averaged mass distribution of BS over $n=1,..., 500\ 000$

Thank you!

Hayk Aleksanyan Discrete Balayage and Boundary Sandpile

- ∢ ≣ ▶