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Lattice growth models, internal DLA - an example

Place n ∈ N identical particles at the origin of Zd (d ≥ 2).

One-by-one each of these n particles performs a simple
symmetric random walk on Zd until reaching an unoccupied
site, where it stops.

Question: What can we say about Vn ⊂ Zd - the (random)
set of occupied sites ?
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internal DLA

Figure: An occupied cluster on Z2 for n = 10 000.
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internal DLA

Figure: An occupied cluster on Z2 for n = 1 000 000.

Figure: Closer look near the north pole.
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internal DLA - scaling limit

The occupied cluster is close to a ball (with probability 1).

Lawler, Bramson, Griffeat [Ann. Prob., ’92]

Let d ≥ 2 and fix any ε > 0. Then the inclusions
Bn(1−ε) ⊂ Vbωdndc ⊂ Bn(1+ε) hold for n large enough with
probability 1.

Quantitative analysis of fluctuations by

Lawler [Ann. Prob., ’95],

Jerison-Levine-Sheffield, [JAMS, ’10],

Asselah-Gaudillière [Ann. Prob. ’10]
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Abelian Sandpile model (ASM)

Start with n ∈ N identical chips (grains of sands) at the origin
of Zd

Call x ∈ Zd unstable if it carries at least 2d chips.

Any unstable site can topple by distributing 1 chip to each of
its lattice neighbours (there are 2d in total).

Toppling of unstable sites continue, until all vertices of Zd are
stable (i.e. have at most 2d − 1 chips).

Why Abelian?

the final (stable) configuration

number of times a given vertex topples

both are independent of the order in which the unstable sites are
being toppled.
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ASM: a toy example
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Abelian Sandpile model

This model was introduced by physicists as an example (model) of
self-organised criticality in physical systems evolving into barely
stable states (e.g. avalanches, earthquakes,...)

There is a wealth of mathematics at the heart of this model.

Viscosity theory of elliptic PDEs

Appolonian circle packings

Tropical geometry

Sandpile groups

etc.
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ASM: large cluster

Figure: The limiting shape of the two-dimensional ASM on Z2 with initial 10
000 000 particles placed at the origin. Sites of Z2 having 0,1,2, or 3 number of
chips are coloured by black, purple, red, and blue respectively.
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The odometer and discrete Laplacian

Odometer

For each x ∈ Zd let u(x) = number of times x has toppled during
the entire life-time of the sandpile.

u is well-defined thanks to Abelian property.

Each toppling of y ∈ Zd gives 1 chip to each of its neighbours.
Hence, each x ∈ Zd

receives
∑
y∼x

u(y) chips,

gives away u(x)× 2d ,
the net gain is thus∑

y∼x
[u(y)− u(x)] = ∆1u(x).

Hence for initial configuration of nδ0 chips, the final state
s : Zd → {0, 1, ..., 2d − 1} is given by

∆1u(x) = s(x)− nδ0.
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Least action principle

If s is the stable configuration for n chips, and u : Zd → Z+ is the
odometer then we have

nδ0 + ∆1u(x) ≤ 2d − 1, x ∈ Zd .

Least Action principle (Fey-Levine-Peres; J. Stat. Phys. ’10)

u = min{w : Zd → Z+ : nδ0 + ∆1w(x) ≤ 2d − 1, x ∈ Zd}

Each vertex does the minimal amount of work for stabilization.
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ASM: the scaling limit

For n ∈ N chips let un be the odometer, and set h = n−1/d .

(Scaling) uh(x) := h2un(h−1x), sh(x) = sn(h−1x) with
x ∈ hZd .

We have ∆huh(x) = sh(x)− h−dδ0 for all x ∈ hZd .

For fixed h > 0 and each x ∈ hZd extend uh as uh ≡ uh(x) in
the cube

[
x1 − h

2 , x1 + h
2

)
× ...×

[
xd − h

2 , xd + h
2

)
.

This extension preserves the discrete Laplacian, we still get
∆huh(x) = sh(x)− h−dδ0 but now for all x ∈ Rd .
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ASM: the scaling limit

Existence of a scaling limit (Pegden-Smart, Duke ’13)

There exist compactly supported, non-negative u0 ∈ C (Rd \ {0}),
and s ∈ L∞(Rd) such that uh → u0 locally uniformly in Rd \ {0}
and sh → s weak* in L∞(Rd). Moreover, ∆u0 = s − δ0 in a sense
of distributions, 0 ≤ s ≤ 2d − 1 and

∫
Rd s(x)dx = 1.

the proof uses the least action principle, and viscosity theory of
elliptic PDEs.

Regularity of the boundary of ASM (A. - Shahgholian, arXiv ’16)

The (free) boundary of the scaling limit of ASM is locally a
Lipschitz graph.

the proof uses the least action principle, and (combinatorial)
moving plane techniques.
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Lipschitz graph.

the proof uses the least action principle, and (combinatorial)
moving plane techniques.
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Relaxing the integral constraint in ASM

A “slight” change in the obstacle problem for ASM

u(x) := inf{w : Zd → R+ : nδ0 + ∆1w(x) ≤ 1},

where n > 0 is a continuous mass now, and

∆1w(x) =
1

2d

∑
y∼x

w(y)− w(x).

Divisible sandpile (Levine-Peres ’09; Zidarov ’90)

A lattice site is full, if it carries mass at least 1.

A full site can topple by evenly distributing its excess from 1
among its 2d lattice neighbours.
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Figure: The redistribution of mass 100 000 by divisible sandpile.
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Divisible sandpile and Quadrature domains

Fix xi ∈ Rd and λi > 0, i = 1, ..., k . A domain D ⊂ Rd is called a
quadrature domain, if for all integrable super-harmonic functions
h one has ∫

D
h(x)dx ≤

k∑
i=1

λih(xi ).

Theorem (Levine-Peres [J. Anal. Math, ’10])

For a “sufficiently nice” initial density the scaling limit of the
divisible sandpile is a quadrature domain.
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Boundary sandpile (BS): Initial motivation

Generate a quadrature surface via sandpile dynamics.

That is,
given a measure µ on Rd find a domain D ⊂ Rd s.t.∫

h(x)dµ(x) =

∫
∂D

h(x)dH∂D ,

for all harmonic functions h in D.

Expressed differently (Shahgholian, [Ark. Math. ’94])

for a given measure µ find a domain D where the problem

∆u = −µ in D, u = 0 on ∂D and
∂u

∂ν
= −1 on ∂D,

has a solution.
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Boundary sandpile: definition of the process BS(µ0, κ0)

Fix a mass distribution µ0 : Zd → R+ with finite support and
bounded total mass, and set a threshold κ0 > 0.

Start with V0 := suppµ0 and u0 ≡ 0 on Zd , and inductively
define a triple (Vk , uk , µk), k = 1, 2, ....

At discrete time k ≥ 0 call a given x ∈ Zd unstable, if either
of the following holds:

(a) x ∈
◦
V k , µk(x) > 0,

(b) x ∈ ∂Vk , µk(x) > κ0.

Topple an unstable site by evenly distributing all its mass
equally among its 2d lattice neighbours.

If there are no unstable sites, stop (will never stop except for
trivial cases).

Vk shows the set of visited sites, uk(x) is the amount of
emissions from x ∈ Zd , and µk is the distribution - all
computed after the k-th toppling has been invoked (times
before k are included).
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For all k = 0, 1, ... we get ∆1uk(x) = µk(x)− µ0(x), x ∈ Zd .

Existence of stable states

Let T = {xk}∞k=1 ⊂ Zd be any, s.t. all x ∈ Zd appear in T
infinitely often. Then, one-by-one toppling vertices of T produces a
stable configuration in the limit. In particular, the all mass is being
sweeped out (“balayaged”) to the combinatorial free boundary.

Proof: Show that #∂Vk is bounded above independently of k .

Abelian property

For any two toppling sequences T1 and T2 as above, the final
configurations coincide, i.e. the model is Abelian.

Proof: If T1 = {xk}∞k=1, we show (by a careful induction) that
odometers satisfy u2(xk) ≥ u1,k(xk) for all k .

Note: Abelian property is NOT automatic; there are non-Abelian
sandpiles [Fey-den Boer, Liu; J. Cell. Automata ’11].
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Figure: Final configuration of the BS on the left, with initial mass of 1 000 000
concentrated at the origin of Z2 and boundary capacity equal to 1 000. The
odometer is on the right. Warmer colors (starting from dark red) have larger
numerical values than the cooler ones (terminating at dark blue). The
odometer develops a singularity at the source.
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Consider BS(µ0, κ0); call a pair (V , u) stabilizing if

(i) V ⊂ Zd is finite and suppµ0 ⊂ V ,

(ii) u : V → R+ is a function satisfying
∆1u = −µ0, in

◦
V ,

u = 0, on ∂V ,

µ0 + ∆1u ≤ κ0, on ∂V .

Theorem

Let V0 be the set of visited sites for BS(µ0, κ0). Then, V0 is the
intersection of all V ⊂ Zd for which there is a function u s.t. the
pair (V , u) is stabilizing.

Reformulation in terms of a discrete obstacle problem

If u is the odometer for BS(µ0, κ0) then

u = inf{w : Zd → R+ : µ0 + ∆1w ≤ κ0I∂{w>0} on Zd}.
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Growth of the model for a single source

Consider BS(nδ0, κ0) and let (V , u) be the stabilizing pair.

Comparison with sub-solutions

Fix B ⊂ V with origin in its interior and let v : B → R satisfy

∆1v ≥ −nδ0 in
◦
B, v = 0 on ∂B and ∆1v > κ0 on ∂B.

Then, ∂B ∩ ∂V = ∅, i.e. sub-solutions stay strictly inside.

Proof: For w := u − v we get ∆1w ≤ 0 in
◦
B and w ≥ 0 on ∂B.

Discrete maximum principle implies minB w ≥ min∂B w ≥ 0.
Hence, if ∃ x0 ∈ ∂B ∩ ∂V , then κ0 < ∆1v(x0) ≤ ∆1u(x0) ≤ κ0, a
contradiction. �

To estimate the growth of the visiting sites, compare it with a
controllable sub-solution.
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Growth of the model for a single source

For R > 0 let GR be the Green’s function (pole at the origin) for
the discrete ball ZR .

Laplacian of GR

There exists R0 depending on dimension d and 0 < c1 < C1

depending on d and R0 s.t.

c1R
1−d < ∆1GR(x) < C1R

1−d for all x ∈ ∂ZR .

Proof: Write GR(x) = g(x , 0)− Ex [g(SτR , 0)], where g(x , y) is
the fundamental solution of ∆1 on Zd ×Zd , and τR is the first exit

time from
◦
ZR of a simple random walk started at x . Use that the

walk will exit ZR in finite time with probability 1, then apply the
asymptotics of g .
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Growth of the model for a single source

Comparison with Green’s function of a ball , shows that the
growth of BS(nδ0, κ) is of size R where κ0 � nR1−d , i.e. the
scale of the model is of order n1/d .

The minimality principle principle implies monotone and
unbounded growth for a model BS(nδ0, n

1/d).

Discrete Harnack implies non-degeneracy, i.e. for any r0 > 0
there is a constant c0 > 0 depending on r0 and d such that
for any n > 1 and each x0 ∈ ∂Vn with dist(x0, ∂Vn) ≥ r0n

1/d

one has un(x0) ≥ c0n
2/d .

The meaning of this, is that the odometers do not flatten
out.
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Lipschitz bounds

Consider BS(nδ0, n
1/d), and let un be the odometer and Vn be

the set of visited sites.

Using random walk counterpart of the problem, and known
asymptotic bounds for (discrete) fundamental solutions we get

Gradient bounds in annulus

Fix r0 > 0. There is a constant C = C (r0) > 0 such that for any
n > 1 one has

|un(x)− un(y)| ≤ Cn1/d ,

for any x , y ∈ Vn with x ∼ y and r0n
1/d ≤ |x | ≤ 2r0n

1/d .
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Lipschitz bounds

Uniform Lipschitz estimate away from the origin

For any r0 > 0 there exists a constant C = C (r0) > 0 s.t. for any
n > 1 and each x , y ∈ Vn with |x |, |y | > r0n

1/d one has
|un(x)− un(y)| ≤ Cn1/d |x − y |.

Proof: The discrete derivative ∂+i u(x) := u(x + ei )− u(x) is
∆1-harmonic in

Vn,0 := {x ∈ Vn : |x | ≥ r0n
1/d , dist(x , ∂Vn) ≥ 2}.

By discrete maximum principle + gradient bounds in the annulus
+ stability of the sandpile, we get

|∂+i u(x)| ≤ Cn1/d for x ∈ Vn,0.

Now, for any x , y ∈ Vn fix a path x = X0 ∼ ... ∼ Xk = y through
Vn,0, with k � |x − y |, and apply 1-step Lipschitz bound.
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Convergence

Scaled odometers are uniformly Lipschitz away from the origin

Set h = n−1/d and uh(x) := h2un(h−1x), x ∈ hZd . Then

|uh(x)− uh(y)| ≤ Cr0 |x − y |

for all x , y ∈ hZd with |x |, |y | > r0.

This eventually implies convergence of the sandpiles along
subsequences as (mesh-size) h→ 0.

We do NOT know if the limit is unique.
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Directional monotonicity via moving planes

Let S be the set of mirror symmetry hyperplanes of the cube
[0, 1]d , Elements of S are the hyperplanes (d2 in total)

{xi = 1/2}, {xi = xj} and {xi = −xj} with 1 ≤ i 6= j ≤ d .

Theorem

Let (V , u) be the stabilizing pair of BS(nδ0, κ0) and T ∈ S be any.
Then, for any X1,X2 ∈ Zd s.t. X1 − X2 6= 0 is orthogonal to T we
have

u(X1) ≥ u(X2) ⇐⇒ |X1| ≤ |X2|.

The same is true for Abelian Sandpile model (with a simpler
proof).
The intuition: There is less “action” away from the source.
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Idea of the proof of monotonicity

Assuming |X1| < |X2| need to prove u(X2) ≤ u(X1).

Put T “in between” X1 and X2 (on equal distance).

Reflect Zd with respect to T0 - the translate of T , and define
reflected domain V ∗, and odometer u∗(x) = u(x∗).

Set H− to be the closed half-space determined by T0

containing the origin, and let H+ := Rd \ H−.

Define

uT (x) =

{
u(x), if x ∈ V− := H− ∩ V ,

min{u(x), u∗(x)}, if x ∈ V+ := H+ ∩ V ∩ V ∗.

Use minimality principle (or Least Action for ASM) to prove
u(x) ≤ uT (x) (delicate combinatorics)

Since X2 ∈ H+ we get
u(X2) ≤ uT (X2) = min{u(X1), u(X2)} ≤ u(X1) q.e.d.
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reflected domain V ∗, and odometer u∗(x) = u(x∗).

Set H− to be the closed half-space determined by T0

containing the origin, and let H+ := Rd \ H−.

Define

uT (x) =

{
u(x), if x ∈ V− := H− ∩ V ,

min{u(x), u∗(x)}, if x ∈ V+ := H+ ∩ V ∩ V ∗.

Use minimality principle (or Least Action for ASM) to prove
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Lipschitz boundary via monotonicity of odometers

The directional monotonicity of discrete odometers is
inherited by (any) scaling limit u0 in continuous space.

Namely, the odometer u0 is increasing “toward the origin” on
directions N := {ei , ei + ej , ei − ej , 1 ≤ i 6= j ≤ d}.
At any point x0 ∈ ∂{u0 > 0} on the free boundary, we can
extract d linearly independent directions from N along which
u0 is monotone.

The (truncated) double-cone spanned by this direction vectors
and having vertex at x0 has no points of the free boundary in
its interior.

Since the free boundary satisfies the double-cone condition, it
is a Lipschitz graph locally.

Works the same for Abelian Sandpile, and Boundary Sandpile.
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Averaged mass distribution of BS over n=1,..., 500 000
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Thank you!
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