Boundary value homogenization of Dirichlet problem for divergence type elliptic operators

Hayk Aleksanyan

KTH Royal Institute of Technology,

Stockholm, Sweden

May 18, 2016

/□ ▶ < 글 ▶ < 글

For a vector-function $u = (u_1, ..., u_N)$ define the operator

$$(\mathcal{L}u)_i = -D_{\alpha}[A_{ij}^{\alpha\beta}(\cdot)D_{\beta}u_j] := -\nabla \cdot [A(x)\nabla u(x)]$$

伺 ト く ヨ ト く ヨ ト

For a vector-function $u = (u_1, ..., u_N)$ define the operator

$$(\mathcal{L}u)_i = -D_{\alpha}[A_{ij}^{\alpha\beta}(\cdot)D_{\beta}u_j] := -\nabla \cdot [A(x)\nabla u(x)].$$

• $D \subset \mathbb{R}^d$ $(d \ge 2)$ is a bounded domain,

For a vector-function $u = (u_1, ..., u_N)$ define the operator

$$(\mathcal{L}u)_i = -D_{\alpha}[A_{ij}^{\alpha\beta}(\cdot)D_{\beta}u_j] := -\nabla \cdot [A(x)\nabla u(x)]$$

• $D \subset \mathbb{R}^d$ $(d \ge 2)$ is a bounded domain,

• $g(x,y): \partial D \times \mathbb{R}^d \to \mathbb{C}^N$ is \mathbb{Z}^d -periodic in y, i.e.

$$g(x,y) = g(x,y+h), h \in \mathbb{Z}^d.$$

For a vector-function $u = (u_1, ..., u_N)$ define the operator

$$(\mathcal{L}u)_i = -D_{\alpha}[A_{ij}^{\alpha\beta}(\cdot)D_{\beta}u_j] := -\nabla \cdot [A(x)\nabla u(x)]$$

D ⊂ ℝ^d (d ≥ 2) is a bounded domain,
g(x, y) : ∂D × ℝ^d → ℂ^N is ℤ^d-periodic in v. i.e.

$$g(x,y) = g(x,y+h), h \in \mathbb{Z}^d.$$

The problem:

$$\begin{cases} \mathcal{L} u_{\varepsilon} = 0 & \text{ in } D, \\ u_{\varepsilon}(x) = g(x, x/\varepsilon) & \text{ on } \partial D. \end{cases}$$

• D is bounded, smooth and strictly convex domain,

A B > A B >

- D is bounded, smooth and strictly convex domain,
- the operator is uniformly elliptic and coefficients are smooth,

- D is bounded, smooth and strictly convex domain,
- the operator is uniformly elliptic and coefficients are smooth,
- the boundary data g is smooth.

- D is bounded, smooth and strictly convex domain,
- the operator is uniformly elliptic and coefficients are smooth,
- the boundary data g is smooth.

Let u_{ε} be the solution to the problem with fixed operator, and boundary data $g(\cdot, \cdot/\varepsilon)$, and u_0 be the solution to the same problem but with boundary data $\overline{g}(x) = \int_{\mathbb{T}^d} g(x, y) dy$, $x \in \partial D$.

- D is bounded, smooth and strictly convex domain,
- the operator is uniformly elliptic and coefficients are smooth,
- the boundary data g is smooth.

Let u_{ε} be the solution to the problem with fixed operator, and boundary data $g(\cdot, \cdot/\varepsilon)$, and u_0 be the solution to the same problem but with boundary data $\overline{g}(x) = \int_{\mathbb{T}^d} g(x, y) dy$, $x \in \partial D$.

Theorem (Pointwise estimates; J. Diff. Eq. '13, joint with H. Shahgholian, and P. Sjölin)

For each $\kappa > d-1$ there exists a constant C_{κ} such that

$$|u_{arepsilon}(x)-u_0(x)|\leq C_\kappa\min\left\{1,rac{arepsilon^{(d-1)/2}}{d(x)^\kappa}
ight\},\qquadorall x\in D,$$

where d(x) is the distance of x from the boundary of D.

Integrating the pointwise bound we immediately get L^p -estimates

伺 ト く ヨ ト く ヨ ト

Integrating the pointwise bound we immediately get L^p -estimates

Corollary1 For each $1 \le p < \infty$ and each $\kappa < \frac{1}{2p}$ there exists a constant C_{κ} such that $||u_{\varepsilon} - u_0||_{L^p(D)} \le C_{\kappa} \varepsilon^{\kappa}.$

From the methods of the proof of Pointwise bounds we have.

From the methods of the proof of Pointwise bounds we have.

Corollary2

Assume D is a bounded and smooth domain in \mathbb{R}^d , such that there is an integer $1 \le m \le d-1$ for which at any $x \in \partial D$ at least m of the principal curvatures of ∂D are non-zero.

・ 同 ト ・ ヨ ト ・ ヨ ト

From the methods of the proof of Pointwise bounds we have.

Corollary2

Assume D is a bounded and smooth domain in \mathbb{R}^d , such that there is an integer $1 \le m \le d-1$ for which at any $x \in \partial D$ at least m of the principal curvatures of ∂D are non-zero.

Then, for each $\kappa > m$ we have (a)

$$|u_{\varepsilon}(x) - u_0(x)| \leq C_{\kappa} \min\left\{1, \frac{\varepsilon^{m/2}}{d(x)^{\kappa}}
ight\}, \qquad \forall x \in D$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

From the methods of the proof of Pointwise bounds we have.

Corollary2

(a)

Assume D is a bounded and smooth domain in \mathbb{R}^d , such that there is an integer $1 \le m \le d-1$ for which at any $x \in \partial D$ at least m of the principal curvatures of ∂D are non-zero.

Then, for each $\kappa > m$ we have

$$|u_{\varepsilon}(x) - u_0(x)| \leq C_{\kappa} \min\left\{1, rac{arepsilon^{m/2}}{d(x)^{\kappa}}
ight\}, \qquad orall x \in D.$$

(b) For each $1 \le p < \infty$ and each $\kappa < \frac{1}{2p}$ there exists a constant C_{κ} such that

$$||u_{\varepsilon}-u_{0}||_{L^{p}(D)}\leq C_{\kappa}\varepsilon^{\kappa}.$$

- 4 同 6 4 日 6 4 日 6

-

...continuing (why strictly convex?)

□ ▶ < □ ▶ < □</p>

Assume $D \subset \mathbb{R}^d (d \ge 2)$ is a bounded domain with smooth boundary, such that the Gaussian curvature of ∂D is nowhere vanishing.

ゆ ト イヨ ト イヨト

Assume $D \subset \mathbb{R}^d (d \ge 2)$ is a bounded domain with smooth boundary, such that the Gaussian curvature of ∂D is nowhere vanishing.

Then all principal curvatures of ∂D are *strictly positive*, and D is *strictly convex*.

Assume $D \subset \mathbb{R}^d (d \ge 2)$ is a bounded domain with smooth boundary, such that the Gaussian curvature of ∂D is nowhere vanishing.

Then all principal curvatures of ∂D are *strictly positive*, and D is *strictly convex*.

Boundedness of $D \Longrightarrow \exists x \in \partial D$ where all principal curvatures are positive.

Assume $D \subset \mathbb{R}^d (d \ge 2)$ is a bounded domain with smooth boundary, such that the Gaussian curvature of ∂D is nowhere vanishing.

Then all principal curvatures of ∂D are *strictly positive*, and D is *strictly convex*.

Boundedness of $D \Longrightarrow \exists x \in \partial D$ where all principal curvatures are positive.

Hence, they have to remain positive everywhere, as otherwise the Gaussian curvature will vanish at some point.

Assume $D \subset \mathbb{R}^d (d \ge 2)$ is a bounded domain with smooth boundary, such that the Gaussian curvature of ∂D is nowhere vanishing.

Then all principal curvatures of ∂D are *strictly positive*, and D is *strictly convex*.

Boundedness of $D \Longrightarrow \exists x \in \partial D$ where all principal curvatures are positive.

Hence, they have to remain positive everywhere, as otherwise the Gaussian curvature will vanish at some point.

All principal curvatures are positive $\implies D$ is locally convex.

Assume $D \subset \mathbb{R}^d (d \ge 2)$ is a bounded domain with smooth boundary, such that the Gaussian curvature of ∂D is nowhere vanishing.

Then all principal curvatures of ∂D are *strictly positive*, and D is *strictly convex*.

Boundedness of $D \Longrightarrow \exists x \in \partial D$ where all principal curvatures are positive.

Hence, they have to remain positive everywhere, as otherwise the Gaussian curvature will vanish at some point.

All principal curvatures are positive $\implies D$ is locally convex.

Use Tietze-Nakajima's theorem (1928) to pass from *local* to *global* convexity.

・ 同 ト ・ ヨ ト ・ ヨ ト

...continuing (non optimality of L^2 bound)

the domain D is strictly convex.

→ 3 → 4 3

the domain D is strictly convex.

An observation

For constant coefficients our setting is identical to the one by Gérard-Varet and Masmoudi (Acta Math. '12) (oscillating operator and oscillating Dirichlet data)

the domain D is strictly convex.

An observation

For constant coefficients our setting is identical to the one by Gérard-Varet and Masmoudi (Acta Math. '12) (oscillating operator and oscillating Dirichlet data)

Comparing L^2 rates we get $\frac{1}{4} > \frac{d-1}{3d+5}$ for $d \leq 8$.

the domain D is strictly convex.

An observation

For constant coefficients our setting is identical to the one by Gérard-Varet and Masmoudi (Acta Math. '12) (oscillating operator and oscillating Dirichlet data)

Comparing
$$L^2$$
 rates we get $\frac{1}{4} > \frac{d-1}{3d+5}$ for $d \le 8$.

The conclusion is that $\frac{d-1}{3d+5}$ is not optimal in general.

the domain D is strictly convex.

An observation

For constant coefficients our setting is identical to the one by Gérard-Varet and Masmoudi (Acta Math. '12) (oscillating operator and oscillating Dirichlet data)

Comparing
$$L^2$$
 rates we get $\frac{1}{4} > \frac{d-1}{3d+5}$ for $d \le 8$.

The conclusion is that $\frac{d-1}{3d+5}$ is not optimal in general. But neither is $\frac{1}{4}$.

Theorem (L^p estimates; ARMA '15, joint with H. Shahgholian, and P. Sjölin)

For each $1 \leq p < \infty$ there exists a constant C_p such that

$$||u_{\varepsilon} - u_0||_{L^p(D)} \le C_p \begin{cases} \varepsilon^{1/2p}, & d = 2, \\ (\varepsilon |\ln \varepsilon|)^{1/p}, & d = 3, \\ \varepsilon^{1/p}, & d \ge 4. \end{cases}$$

Theorem (L^p estimates; ARMA '15, joint with H. Shahgholian, and P. Sjölin)

For each $1 \leq p < \infty$ there exists a constant C_p such that

$$||u_{\varepsilon} - u_0||_{L^p(D)} \le C_p \begin{cases} \varepsilon^{1/2p}, & d = 2, \\ (\varepsilon |\ln \varepsilon|)^{1/p}, & d = 3, \\ \varepsilon^{1/p}, & d \ge 4. \end{cases}$$

Theorem (Optimality of L^{p} -convergence rate; ibid)

Let N = 1, and assume that g depends only on its periodic variable. Then for each $1 \le p < \infty$ there exists a constant C_p independent of ε , such that

$$\|u_{\varepsilon}-u_0\|_{L^p(D)}\geq C_p\varepsilon^{1/p}\|g-\overline{g}\|_{L^{\infty}(\mathbb{T}^d)}.$$

Define $P_k^{\gamma} = x_{\gamma}(0, ..., 1, ..., 0) \in \mathbb{R}^N$ with 1 in the *k*-th position, $1 \leq k \leq N$, $1 \leq \gamma \leq d$. Let $\mathcal{L}_{\varepsilon}^*$ be the adjoint of $\mathcal{L}_{\varepsilon}$.

伺 と く ヨ と く ヨ と

Define $P_k^{\gamma} = x_{\gamma}(0, ..., 1, ..., 0) \in \mathbb{R}^N$ with 1 in the *k*-th position, $1 \leq k \leq N, \ 1 \leq \gamma \leq d$. Let $\mathcal{L}_{\varepsilon}^*$ be the adjoint of $\mathcal{L}_{\varepsilon}$.

Theorem (homogenization of the oscillating problem; ibid)

Let $d \geq 3$, and assume that $\mathcal{L}^*_{\varepsilon}(P_k^{\gamma}) = 0$ for all $1 \leq k \leq N$, and $1 \leq \gamma \leq d$. Then there exists a boundary term g^* so that if u_0 is the solution of the oscillating problem with boundary data g^* then for any $1 \leq p < \infty$ one has

$$||u_{\varepsilon}-u_0||_{L^p(D)}\leq C_p(\varepsilon[\ln(1/\varepsilon)]^2)^{1/p}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Define $P_k^{\gamma} = x_{\gamma}(0, ..., 1, ..., 0) \in \mathbb{R}^N$ with 1 in the *k*-th position, $1 \leq k \leq N, \ 1 \leq \gamma \leq d$. Let $\mathcal{L}_{\varepsilon}^*$ be the adjoint of $\mathcal{L}_{\varepsilon}$.

Theorem (homogenization of the oscillating problem; ibid)

Let $d \ge 3$, and assume that $\mathcal{L}^*_{\varepsilon}(\mathcal{P}^{\gamma}_k) = 0$ for all $1 \le k \le N$, and $1 \le \gamma \le d$. Then there exists a boundary term g^* so that if u_0 is the solution of the oscillating problem with boundary data g^* then for any $1 \le p < \infty$ one has

$$||u_{\varepsilon}-u_0||_{L^p(D)}\leq C_p(\varepsilon[\ln(1/\varepsilon)]^2)^{1/p}.$$

Set $v_{k,i}^{\gamma}(x) = (A_{ki}^{\gamma 1}, ..., A_{ki}^{\gamma d})(x)$, $x \in \mathbb{R}^d$, where $1 \le k, i \le N$, $1 \le \gamma \le d$. Then $\mathcal{L}_{\varepsilon}^*(P_k^{\gamma}) \equiv 0$ is equivalent to

$$\operatorname{div}(v_{k,i}^{\gamma})(x) = 0, \qquad x \in \mathbb{R}^d, \ 1 \leq k, i \leq N, \ 1 \leq \gamma \leq d.$$

(4月) (日) (日) 日

Define $P_k^{\gamma} = x_{\gamma}(0, ..., 1, ..., 0) \in \mathbb{R}^N$ with 1 in the *k*-th position, $1 \leq k \leq N, \ 1 \leq \gamma \leq d$. Let $\mathcal{L}_{\varepsilon}^*$ be the adjoint of $\mathcal{L}_{\varepsilon}$.

Theorem (homogenization of the oscillating problem; ibid)

Let $d \ge 3$, and assume that $\mathcal{L}_{\varepsilon}^{*}(P_{k}^{\gamma}) = 0$ for all $1 \le k \le N$, and $1 \le \gamma \le d$. Then there exists a boundary term g^{*} so that if u_{0} is the solution of the oscillating problem with boundary data g^{*} then for any $1 \le p < \infty$ one has

$$||u_{arepsilon}-u_0||_{L^p(D)}\leq C_p(arepsilon[\ln(1/arepsilon)]^2)^{1/p}.$$

Set $v_{k,i}^{\gamma}(x) = (A_{ki}^{\gamma 1}, ..., A_{ki}^{\gamma d})(x)$, $x \in \mathbb{R}^d$, where $1 \le k, i \le N$, $1 \le \gamma \le d$. Then $\mathcal{L}_{\varepsilon}^*(P_k^{\gamma}) \equiv 0$ is equivalent to

$$\operatorname{div}(v_{k,i}^{\gamma})(x) = 0, \qquad x \in \mathbb{R}^{d}, \ 1 \leq k, i \leq N, \ 1 \leq \gamma \leq d.$$

For scalar equations (N = 1) the condition means that rows of A must be *divergence free* vector fields.

The proof is based on our method for fixed operator combined with a result due to Kenig-Lin-Shen (CPAM '14) for oscillating operator and fixed data.

同 ト イ ヨ ト イ ヨ ト

From fixed operator to oscillating

The proof is based on our method for fixed operator combined with a result due to Kenig-Lin-Shen (CPAM '14) for oscillating operator and fixed data.

We can compute the homogenized boundary data in this case. Set

$$h(y) := (h_{ij}(y))_{N \times N} = (A^{0, \alpha\beta} n_{\alpha}(y) n_{\beta}(y)), \qquad y \in \partial D.$$

From fixed operator to oscillating

The proof is based on our method for fixed operator combined with a result due to Kenig-Lin-Shen (CPAM '14) for oscillating operator and fixed data.

We can compute the homogenized boundary data in this case. Set

$$h(y) := (h_{ij}(y))_{N \times N} = (A^{0, \alpha\beta} n_{\alpha}(y) n_{\beta}(y)), \qquad y \in \partial D.$$

Then for $g^*(y) = (g_i^*(y))_{i=1}^N$ we have

From fixed operator to oscillating

The proof is based on our method for fixed operator combined with a result due to Kenig-Lin-Shen (CPAM '14) for oscillating operator and fixed data.

We can compute the homogenized boundary data in this case. Set

$$h(y) := (h_{ij}(y))_{N \times N} = (A^{0, \alpha\beta} n_{\alpha}(y) n_{\beta}(y)), \qquad y \in \partial D.$$

Then for $g^*(y) = (g_i^*(y))_{i=1}^N$ we have

$$g_i^*(y) = h_{ik}(y) n_lpha(y) n_eta(y) \sum_{m \in \mathbb{Z}^d} c_m(A_{kj}^{lphaeta}) c_{-m}(g_j;y), \qquad y \in \partial D,$$

where $n(y) = (n_{\alpha}(y))_{\alpha=1}^{d}$ is the unit outward normal at y.

Hayk Aleksanyan Boundary value homogenization of Dirichlet problem for divergen

▲□ ▶ ▲ 臣 ▶ ▲ 臣

The Poisson kernel *P* for the operator $-\nabla \cdot A\nabla$ satisfies

$$|P(x,y)| \lesssim rac{dist(x,\partial D)}{|x-y|^d}, \qquad x \in D, \ y \in \partial D.$$

→ 3 → 4 3

____ ▶

The Poisson kernel *P* for the operator $-\nabla \cdot A\nabla$ satisfies

$$|P(x,y)| \lesssim \frac{dist(x,\partial D)}{|x-y|^d}, \qquad x \in D, \ y \in \partial D.$$

If u solves $-\nabla \cdot A(x)\nabla u(x) = 0$ in D and u(x) = g(x) on ∂D then

伺 と く ヨ と く ヨ と

3

The Poisson kernel *P* for the operator $-\nabla \cdot A\nabla$ satisfies

$$|P(x,y)| \lesssim rac{dist(x,\partial D)}{|x-y|^d}, \qquad x \in D, \ y \in \partial D.$$

If u solves $-\nabla \cdot A(x)\nabla u(x) = 0$ in D and u(x) = g(x) on ∂D then

Concentration inequality

There are positive constants c_0 , C_0 depending on A, D and d only, s.t. for any $\delta > 0$ small and any $\xi \in \partial D$ one has

$$|u(x)-g(\xi)|\leq \frac{1}{8}||g||_{L^{\infty}}+C_0\delta Lip(g),$$

for all $x \in D$ with $|x - \xi| \leq c_0 \delta$.

The Poisson kernel *P* for the operator $-\nabla \cdot A\nabla$ satisfies

$$|P(x,y)| \lesssim rac{dist(x,\partial D)}{|x-y|^d}, \qquad x \in D, \ y \in \partial D.$$

If u solves $-\nabla \cdot A(x)\nabla u(x) = 0$ in D and u(x) = g(x) on ∂D then

Concentration inequality

There are positive constants c_0 , C_0 depending on A, D and d only, s.t. for any $\delta > 0$ small and any $\xi \in \partial D$ one has

$$|u(x)-g(\xi)|\leq \frac{1}{8}||g||_{L^{\infty}}+C_0\delta Lip(g),$$

for all $x \in D$ with $|x - \xi| \le c_0 \delta$.

The proof is via integral representation of u and the distance estimate for P.

Hayk Aleksanyan Boundary value homogenization of Dirichlet problem for divergen

Choosing $\delta = a_0 \varepsilon$ with $a_0 > 0$ a small constant, we see that

$$|u_{\varepsilon}(x) - g_{\varepsilon}(\xi)| \leq \frac{1}{8} ||g||_{L^{\infty}(\mathbb{T}^d)} + C_0 a_0 \varepsilon Lip(g) \frac{1}{\varepsilon} \leq \frac{1}{4} ||g||_{L^{\infty}(\mathbb{T}^d)},$$

for $\forall \xi \in \partial D$ and $\forall x \in D$ satisfying $|x - \xi| \leq a_0 \varepsilon$.

伺 ト く ヨ ト く ヨ ト

Choosing $\delta = a_0 \varepsilon$ with $a_0 > 0$ a small constant, we see that

$$|u_{\varepsilon}(x) - g_{\varepsilon}(\xi)| \leq \frac{1}{8} ||g||_{L^{\infty}(\mathbb{T}^d)} + C_0 a_0 \varepsilon Lip(g) \frac{1}{\varepsilon} \leq \frac{1}{4} ||g||_{L^{\infty}(\mathbb{T}^d)},$$

for $\forall \xi \in \partial D$ and $\forall x \in D$ satisfying $|x - \xi| \leq a_0 \varepsilon$.

The conclusion

If $|g_{\varepsilon}(\xi)|$ is large then $|u_{\varepsilon}(x)|$ remains large in ε -neighbourhood of $\xi \in \partial D$.

Choosing $\delta = a_0 \varepsilon$ with $a_0 > 0$ a small constant, we see that

$$|u_{\varepsilon}(x) - g_{\varepsilon}(\xi)| \leq \frac{1}{8} ||g||_{L^{\infty}(\mathbb{T}^d)} + C_0 a_0 \varepsilon Lip(g) \frac{1}{\varepsilon} \leq \frac{1}{4} ||g||_{L^{\infty}(\mathbb{T}^d)},$$

for $\forall \xi \in \partial D$ and $\forall x \in D$ satisfying $|x - \xi| \leq a_0 \varepsilon$.

The conclusion

If $|g_{\varepsilon}(\xi)|$ is large then $|u_{\varepsilon}(x)|$ remains large in ε -neighbourhood of $\xi \in \partial D$.

We need to understand the distribution of g_{ε} on ∂D , or equivalently $\frac{1}{\varepsilon}\partial D \mod \mathbb{Z}^d$.

Equidistribution of scaled surfaces

Let $D \subset \mathbb{R}^d$ be a bounded domain which is strictly convex and has smooth boundary. Then for any ball $B \subset \mathbb{T}^d$ one has

$$|B| = \lim_{\lambda \to \infty} \frac{\sigma\{x \in \partial D : \lambda x \mod \mathbb{Z}^d \in B\}}{\sigma(\partial D)}$$

Equidistribution of scaled surfaces

Let $D \subset \mathbb{R}^d$ be a bounded domain which is strictly convex and has smooth boundary. Then for any ball $B \subset \mathbb{T}^d$ one has

$$|B| = \lim_{\lambda \to \infty} \frac{\sigma\{x \in \partial D : \lambda x \mod \mathbb{Z}^d \in B\}}{\sigma(\partial D)}$$

For each non-zero $m \in \mathbb{Z}^d$ one has

$$\left|\int_{\partial D} e^{2\pi i \lambda x \cdot m} d\sigma(x)\right| = |\widehat{\sigma}(\lambda m)| \lesssim (\lambda ||m||)^{-(d-1)/2}$$

where the last estimate is due to convexity.

Equidistribution of scaled surfaces

Let $D \subset \mathbb{R}^d$ be a bounded domain which is strictly convex and has smooth boundary. Then for any ball $B \subset \mathbb{T}^d$ one has

$$|B| = \lim_{\lambda \to \infty} \frac{\sigma\{x \in \partial D : \lambda x \mod \mathbb{Z}^d \in B\}}{\sigma(\partial D)}$$

For each non-zero $m \in \mathbb{Z}^d$ one has

$$\left|\int_{\partial D} e^{2\pi i \lambda x \cdot m} d\sigma(x)\right| = |\widehat{\sigma}(\lambda m)| \lesssim (\lambda ||m||)^{-(d-1)/2},$$

where the last estimate is due to convexity.

From here (through Fourier expansion) for any $f \in C^{\infty}(\mathbb{T}^d)$ we get

$$\int_{\mathbb{T}^d} f(x) dx = \frac{1}{\sigma(\partial D)} \int_{\partial D} f(\lambda x) d\sigma(x).$$

Hayk Aleksanyan Boundary value homogenization of Dirichlet problem for divergen

▲□ ▶ ▲ 臣 ▶ ▲ 臣

伺 ト く ヨ ト く ヨ ト

(a) $f_n(x) \leq \mathbb{I}_B(x) \leq F_n(x)$ for all $x \in \mathbb{T}^d$,

(a)
$$f_n(x) \leq \mathbb{I}_B(x) \leq F_n(x)$$
 for all $x \in \mathbb{T}^d$.
(b) $\int_{\mathbb{T}^d} (F_n(x) - f_n(x)) dx \to 0$, $n \to \infty$.

高 と く ヨ と く ヨ と

(a)
$$f_n(x) \leq \mathbb{I}_B(x) \leq F_n(x)$$
 for all $x \in \mathbb{T}^d$
(b) $\int_{\mathbb{T}^d} (F_n(x) - f_n(x)) dx \to 0, \quad n \to \infty.$

Hence, using the case of smooth function proved above, we get

$$\int_{\mathbb{T}^d} \mathbb{I}_B(x) dx = \frac{1}{\sigma(\partial D)} \int_{\partial D} \mathbb{I}_B(\lambda x) d\sigma(x),$$

and we are done.

Assume $\int_{\mathbb{T}^d} g(x) dx = 0$.

聞 と く き と く き と

э

Assume $\int_{\mathbb{T}^d} g(x) dx = 0$. Hence $u_0 = 0$ (the homogenized solution).

伺 ト く ヨ ト く ヨ ト

Assume $\int_{\mathbb{T}^d} g(x) dx = 0$. Hence $u_0 = 0$ (the homogenized solution). Consider the set

$$B = \{x \in \mathbb{T}^d : |g(x)| > ||g||_{L^{\infty}(\mathbb{T}^d)}/2\}.$$

WLOG, we may assume that B is a ball.

A B + A B +

Assume $\int_{\mathbb{T}^d} g(x) dx = 0$. Hence $u_0 = 0$ (the homogenized solution). Consider the set

Lonsider the set

$$B = \{x \in \mathbb{T}^d : |g(x)| > ||g||_{L^{\infty}(\mathbb{T}^d)}/2\}.$$

WLOG, we may assume that B is a ball. Then, for $\varepsilon > 0$ small we have

$$\frac{\sigma\{x\in\partial D:\ (1/\varepsilon)x \mod \mathbb{Z}^d\in B\}}{\sigma(\partial D)}>\frac{1}{2}|B|.$$

Assume $\int_{\mathbb{T}^d} g(x) dx = 0$. Hence $u_0 = 0$ (the homogenized solution). Consider the set

Lonsider the set

$$B = \{ x \in \mathbb{T}^d : |g(x)| > ||g||_{L^{\infty}(\mathbb{T}^d)}/2 \}.$$

WLOG, we may assume that B is a ball. Then, for $\varepsilon > 0$ small we have

$$\frac{\sigma\{x\in\partial D:\ (1/\varepsilon)x \mod \mathbb{Z}^d\in B\}}{\sigma(\partial D)}>\frac{1}{2}|B|.$$

Fix $y\in\partial D$ such that $|g_{arepsilon}(y)|>||g||_{L^{\infty}}/2.$ Hence

$$|u_{\varepsilon}(x)| \ge |g_{\varepsilon}(y)| - |u_{\varepsilon}(x) - g_{\varepsilon}(y)| \ge \frac{1}{2} ||g||_{L^{\infty}} - \frac{1}{4} ||g||_{L^{\infty}},$$

for all $|x - y| \leq a_0 \varepsilon$.

Assume $\int_{\mathbb{T}^d} g(x) dx = 0$. Hence $u_0 = 0$ (the homogenized solution). Consider the set

onsider the set

$$B = \{x \in \mathbb{T}^d : |g(x)| > ||g||_{L^{\infty}(\mathbb{T}^d)}/2\}.$$

WLOG, we may assume that B is a ball. Then, for $\varepsilon > 0$ small we have

$$\frac{\sigma\{x\in\partial D:\ (1/\varepsilon)x \mod \mathbb{Z}^d\in B\}}{\sigma(\partial D)}>\frac{1}{2}|B|.$$

Fix $y\in\partial D$ such that $|g_{arepsilon}(y)|>||g||_{L^{\infty}}/2.$ Hence

$$|u_{\varepsilon}(x)| \geq |g_{\varepsilon}(y)| - |u_{\varepsilon}(x) - g_{\varepsilon}(y)| \geq rac{1}{2} ||g||_{L^{\infty}} - rac{1}{4} ||g||_{L^{\infty}},$$

for all $|x - y| \le a_0 \varepsilon$. Thus, on a fixed portion of an ε -neighbourhood of ∂D we get $|u_{\varepsilon}| \gtrsim \varepsilon$.

Assume $\int_{\mathbb{T}^d} g(x) dx = 0$. Hence $u_0 = 0$ (the homogenized solution). Consider the set

Unsider the set

$$B = \{x \in \mathbb{T}^d : |g(x)| > ||g||_{L^{\infty}(\mathbb{T}^d)}/2\}.$$

WLOG, we may assume that B is a ball. Then, for $\varepsilon > 0$ small we have

$$\frac{\sigma\{x\in\partial D:\ (1/\varepsilon)x \mod \mathbb{Z}^d\in B\}}{\sigma(\partial D)}>\frac{1}{2}|B|.$$

Fix $y\in\partial D$ such that $|g_{arepsilon}(y)|>||g||_{L^{\infty}}/2.$ Hence

$$|u_{\varepsilon}(x)| \geq |g_{\varepsilon}(y)| - |u_{\varepsilon}(x) - g_{\varepsilon}(y)| \geq rac{1}{2}||g||_{L^{\infty}} - rac{1}{4}||g||_{L^{\infty}},$$

for all $|x - y| \le a_0 \varepsilon$. Thus, on a fixed portion of an ε -neighbourhood of ∂D we get $|u_{\varepsilon}| \ge \varepsilon$. Integrating on that portion gives the desired lower bound.

Hayk Aleksanyan Boundary value homogenization of Dirichlet problem for divergen

→ 3 → < 3</p>

• Poisson representation

- ₹ 🖹 🕨

• Poisson representation

$$u_{\varepsilon}(x) - u_0(x) = \int\limits_{\partial D} P(x, y)[g_{\varepsilon}(y) - g_0(y)]d\sigma(y), x \in D.$$

- ₹ 🖹 🕨

• Poisson representation

$$u_{\varepsilon}(x) - u_0(x) = \int\limits_{\partial D} P(x, y)[g_{\varepsilon}(y) - g_0(y)]d\sigma(y), x \in D.$$

• Competing quantities

Poisson representation

$$u_{\varepsilon}(x) - u_0(x) = \int_{\partial D} P(x, y)[g_{\varepsilon}(y) - g_0(y)]d\sigma(y), x \in D.$$

- Competing quantities
 - (a) Singularity (regularity) of the Poisson kernel

Poisson representation

$$u_{\varepsilon}(x) - u_0(x) = \int\limits_{\partial D} P(x, y)[g_{\varepsilon}(y) - g_0(y)]d\sigma(y), x \in D.$$

- Competing quantities
 - (a) Singularity (regularity) of the Poisson kernel

(b) Cancellations coming from $\int_{\partial D} [g_{\varepsilon}(y) - g_0(y)] d\sigma(y)$.

Poisson representation

$$u_{\varepsilon}(x) - u_0(x) = \int\limits_{\partial D} P(x, y)[g_{\varepsilon}(y) - g_0(y)]d\sigma(y), x \in D.$$

- Competing quantities
 - (a) Singularity (regularity) of the Poisson kernel

(b) Cancellations coming from $\int_{\partial D} [g_{\varepsilon}(y) - g_0(y)] d\sigma(y)$.

Determining factors

Poisson representation

$$u_{\varepsilon}(x) - u_0(x) = \int\limits_{\partial D} P(x, y)[g_{\varepsilon}(y) - g_0(y)]d\sigma(y), x \in D.$$

Competing quantities

(a) Singularity (regularity) of the Poisson kernel

(b) Cancellations coming from $\int_{\partial D} [g_{\varepsilon}(y) - g_0(y)] d\sigma(y)$.

Determining factors

use PDE + the geometry of the boundary to quantify (a) and (b)

Poisson representation

$$u_{\varepsilon}(x) - u_0(x) = \int\limits_{\partial D} P(x, y)[g_{\varepsilon}(y) - g_0(y)]d\sigma(y), x \in D.$$

Competing quantities

(a) Singularity (regularity) of the Poisson kernel

(b) Cancellations coming from $\int_{\partial D} [g_{\varepsilon}(y) - g_0(y)] d\sigma(y)$.

Determining factors

use PDE + the geometry of the boundary to quantify (a) and (b)

```
careful trade-off between (a) and (b).
```

The scheme of the proof: Reduction to local graphs

▶ < □ ▶ < □</p>

 ∂D is locally a graph of a smooth function.

A B > A B >

 ∂D is locally a graph of a smooth function. Hence, $\exists r_0 > 0$ small s.t. $\forall z \in \partial D \ \exists \mathcal{R} : \mathbb{R}^d \to \mathbb{R}^d$ orthogonal transformation s.t.

 ∂D is locally a graph of a smooth function. Hence, $\exists r_0 > 0$ small s.t. $\forall z \in \partial D \ \exists \mathcal{R} : \mathbb{R}^d \to \mathbb{R}^d$ orthogonal transformation s.t.

 $\mathcal{R}(\partial D - z) \cap B(0, r_0) = \{(y', \psi(y')): |y'| \le 10r_0\} \cap B(0, r_0),$

where $y' = (y_1, ..., y_{d-1}) \in \mathbb{R}^{d-1}$, $\psi(0) = |\nabla \psi(0)| = 0$ and

 $Hess\psi(0) = diag(a_1, ..., a_{d-1}),$

with $0 < c_0 \le a_1 \le ... \le a_{d-1} \le C_0$ (lower bound due to convexity).

 ∂D is locally a graph of a smooth function. Hence, $\exists r_0 > 0$ small s.t. $\forall z \in \partial D \ \exists \mathcal{R} : \mathbb{R}^d \to \mathbb{R}^d$ orthogonal transformation s.t.

 $\mathcal{R}(\partial D - z) \cap B(0, r_0) = \{(y', \psi(y')): |y'| \le 10r_0\} \cap B(0, r_0),$

where $y' = (y_1, ..., y_{d-1}) \in \mathbb{R}^{d-1}$, $\psi(0) = |\nabla \psi(0)| = 0$ and

 $Hess\psi(0) = diag(a_1, ..., a_{d-1}),$

with $0 < c_0 \le a_1 \le ... \le a_{d-1} \le C_0$ (lower bound due to convexity). Fix $\delta > 0$ and $K_1 < 1$ small s.t.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

 ∂D is locally a graph of a smooth function. Hence, $\exists r_0 > 0$ small s.t. $\forall z \in \partial D \ \exists \mathcal{R} : \mathbb{R}^d \to \mathbb{R}^d$ orthogonal transformation s.t.

 $\mathcal{R}(\partial D - z) \cap B(0, r_0) = \{(y', \psi(y')): |y'| \le 10r_0\} \cap B(0, r_0),$

where $y' = (y_1, ..., y_{d-1}) \in \mathbb{R}^{d-1}$, $\psi(0) = |\nabla \psi(0)| = 0$ and

$$Hess\psi(0) = diag(a_1, ..., a_{d-1}),$$

with $0 < c_0 \le a_1 \le ... \le a_{d-1} \le C_0$ (lower bound due to convexity). Fix $\delta > 0$ and $K_1 < 1$ small s.t.

(a) $K_1|y'| \le |\nabla \psi(y')| \le K_2|y_2|$ for all $|y'| \le \frac{K_1}{4K_2}\delta$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

 ∂D is locally a graph of a smooth function. Hence, $\exists r_0 > 0$ small s.t. $\forall z \in \partial D \ \exists \mathcal{R} : \mathbb{R}^d \to \mathbb{R}^d$ orthogonal transformation s.t.

$$\mathcal{R}(\partial D - z) \cap B(0, r_0) = \{(y', \psi(y')) : |y'| \le 10r_0\} \cap B(0, r_0),$$

where $y' = (y_1, ..., y_{d-1}) \in \mathbb{R}^{d-1}$, $\psi(0) = |\nabla \psi(0)| = 0$ and

$$Hess\psi(0) = diag(a_1, ..., a_{d-1}),$$

with $0 < c_0 \le a_1 \le ... \le a_{d-1} \le C_0$ (lower bound due to convexity). Fix $\delta > 0$ and $K_1 < 1$ small s.t.

(a) $K_1|y'| \le |\nabla \psi(y')| \le K_2|y_2|$ for all $|y'| \le \frac{K_1}{4K_2}\delta$ (b) $|Hess\psi(y') - Hess\psi(0)| \le \frac{a_1}{1000d}$ for all $|y'| \le 100\delta$,

伺下 イヨト イヨト ニヨ

 ∂D is locally a graph of a smooth function. Hence, $\exists r_0 > 0$ small s.t. $\forall z \in \partial D \ \exists \mathcal{R} : \mathbb{R}^d \to \mathbb{R}^d$ orthogonal transformation s.t.

$$\mathcal{R}(\partial D - z) \cap B(0, r_0) = \{(y', \psi(y')) : |y'| \le 10r_0\} \cap B(0, r_0),$$

where $y' = (y_1, ..., y_{d-1}) \in \mathbb{R}^{d-1}$, $\psi(0) = |\nabla \psi(0)| = 0$ and

$$Hess\psi(0) = diag(a_1, ..., a_{d-1}),$$

with $0 < c_0 \le a_1 \le ... \le a_{d-1} \le C_0$ (lower bound due to convexity). Fix $\delta > 0$ and $K_1 < 1$ small s.t.

- (a) $K_1|y'| \le |\nabla \psi(y')| \le K_2|y_2|$ for all $|y'| \le \frac{K_1}{4K_2}\delta$
- (b) $|\text{Hess}\psi(y') \text{Hess}\psi(0)| \le \frac{a_1}{1000d}$ for all $|y'| \le 100\delta$,

(c) $\nabla \psi : B(0, \delta) \mapsto \mathcal{M}$ is one-to-one and onto for some $\mathcal{M} \supset B(0, K_1 \delta)$.

For $L = \frac{\kappa_1}{4\kappa_2}$ and a function $\varphi \in C_0^{\infty}(B(z, L\delta))$, where $z \in \partial D$, consider

$$I(x) = \int_{\partial D} P(x, y) [g_{\varepsilon}(y) - \overline{g}(y)] \varphi(y) d\sigma(y).$$

For $L = \frac{K_1}{4K_2}$ and a function $\varphi \in C_0^{\infty}(B(z, L\delta))$, where $z \in \partial D$, consider

$$I(x) = \int_{\partial D} P(x, y) [g_{\varepsilon}(y) - \overline{g}(y)] \varphi(y) d\sigma(y).$$

Translating the origin onto z and rotating the coordinate system by \mathcal{R} , we may assume WLOG, that z = 0 and $\mathcal{R} = Id$. Thus, passing to volume integral in I we get

$$I(x) = \int_{|y'| < L\delta} P(x, (y', \psi(y')))[g_{\varepsilon} - \overline{g}](y', \psi(y'))\widetilde{\varphi}(y', \psi(y'))dy'.$$

The scheme of the proof: Reduction to oscillatory integrals

g is smooth, hence

$$[g_{\varepsilon} - \overline{g}](y', \psi(y')) = \sum_{m \in \mathbb{Z}^d \setminus \{0\}} c_m(y', \psi(y')) \exp\left[\frac{1}{\varepsilon} m \cdot (y', \psi(y'))\right].$$

g is smooth, hence

$$[g_{\varepsilon} - \overline{g}](y', \psi(y')) = \sum_{m \in \mathbb{Z}^d \setminus \{0\}} c_m(y', \psi(y')) \exp\left[\frac{1}{\varepsilon}m \cdot (y', \psi(y'))\right].$$

Plugging this expansion into I(x), things are reduced to decay estimates for integrals of the form

$$J(x) = \int_{|y'| < L\delta} P(x, (y', \psi(y'))) \Phi(y', \psi(y')) \exp[\lambda F(y')] dy',$$

as $1/arepsilon=:\lambda
ightarrow\infty$,

g is smooth, hence

$$[g_{\varepsilon} - \overline{g}](y', \psi(y')) = \sum_{m \in \mathbb{Z}^d \setminus \{0\}} c_m(y', \psi(y')) \exp\left[\frac{1}{\varepsilon}m \cdot (y', \psi(y'))\right].$$

Plugging this expansion into I(x), things are reduced to decay estimates for integrals of the form

$$J(x) = \int_{|y'| < L\delta} P(x, (y', \psi(y'))) \Phi(y', \psi(y')) \exp[\lambda F(y')] dy',$$

as $1/\varepsilon =: \lambda \to \infty$, where $F(y') = n' \cdot y' + n_d \psi(y')$, $|(n', n_d)| = 1$, and $\Phi = 0$ on $|y'| = L\delta$.

Case 1: $|n'| \ge K_1 \delta/2$.

伺 ト く ヨ ト く ヨ ト

Case 1: $|n'| \ge K_1 \delta/2$. Then, for all $|y'| \le L\delta$ we have

$$\begin{aligned} |\nabla F(y')| &= |n' + n_d \nabla \psi(y')| \ge |n'| - |n_d| K_2 |y'| \ge \\ &\frac{K_1 \delta}{2} - K_2 \frac{K_1}{4K_2} \delta = \frac{K_1 \delta}{4} > 0 \end{aligned}$$

Case 1: $|n'| \ge K_1 \delta/2$. Then, for all $|y'| \le L\delta$ we have

$$\begin{aligned} |\nabla F(y')| &= |n' + n_d \nabla \psi(y')| \ge |n'| - |n_d|K_2|y'| \ge \\ &\frac{K_1 \delta}{2} - K_2 \frac{K_1}{4K_2} \delta = \frac{K_1 \delta}{4} > 0 \end{aligned}$$

Thus, NO *critical points* on the support of Φ .

Case 1: $|n'| \ge K_1 \delta/2$. Then, for all $|y'| \le L\delta$ we have

$$\begin{aligned} |\nabla F(y')| &= |n' + n_d \nabla \psi(y')| \ge |n'| - |n_d| K_2 |y'| \ge \\ \frac{K_1 \delta}{2} - K_2 \frac{K_1}{4K_2} \delta = \frac{K_1 \delta}{4} > 0 \end{aligned}$$

Thus, NO *critical points* on the support of Φ . Hence, integrating by parts in *J* twice we get

$$|J(x)|\lesssim \lambda^{-2}\int_{|y'|< L\delta}rac{dy'}{|x-(y',\psi(y'))|^{d-1+2}}.$$

Case 1: $|n'| \ge K_1 \delta/2$. Then, for all $|y'| \le L\delta$ we have

$$\begin{aligned} |\nabla F(y')| &= |n' + n_d \nabla \psi(y')| \ge |n'| - |n_d| K_2 |y'| \ge \\ \frac{K_1 \delta}{2} - K_2 \frac{K_1}{4K_2} \delta = \frac{K_1 \delta}{4} > 0 \end{aligned}$$

Thus, NO *critical points* on the support of Φ . Hence, integrating by parts in *J* twice we get

$$|J(x)|\lesssim \lambda^{-2}\int_{|y'|$$

For $D_{\varepsilon} = \{x \in D : \operatorname{dist}(x, \partial D) \ge \varepsilon\}$ we obtain

$$\int\limits_{D_arepsilon} |J(x)| dx \lesssim \lambda^{-2} \int\limits_{|w| \ge arepsilon} rac{dw}{|w|^{d+1}} \lesssim \lambda^{-2} rac{1}{arepsilon} \lesssim \lambda^{-1}.$$

Case 2: $|n'| < K_1 \delta/2$.

伺 ト く ヨ ト く ヨ ト

Case 2: $|n'| < K_1 \delta/2$. Since $|(n', n_d)| = 1$ we have $|n_d| > 1/2$, therefore

$$\left|\frac{n'}{n_d}\right| < \frac{K_1\delta}{2(1/2)} = K_1\delta,$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のQ@

Case 2: $|n'| < K_1 \delta/2$. Since $|(n', n_d)| = 1$ we have $|n_d| > 1/2$, therefore

$$\left|\frac{n'}{n_d}\right| < \frac{\kappa_1 \delta}{2(1/2)} = \kappa_1 \delta,$$

hence there is a unique $y_0 \in B(0, \delta)$ s.t. $\nabla \psi(y_0) = -\frac{n'}{n_d}$, so $\nabla F(y_0) = 0$.

Case 2: $|n'| < K_1 \delta/2$. Since $|(n', n_d)| = 1$ we have $|n_d| > 1/2$, therefore

$$\left|\frac{n'}{n_d}\right| < \frac{\kappa_1 \delta}{2(1/2)} = \kappa_1 \delta,$$

hence there is a unique $y_0 \in B(0, \delta)$ s.t. $\nabla \psi(y_0) = -\frac{n'}{n_d}$, so $\nabla F(y_0) = 0$. Since $Hess\psi(y') \approx Hess\psi(0)$ for $|y'| \le 100\delta$, by Mean-Value Theorem for all $1 \le j \le d - 1$ we get

$$|(\partial_j F)(y_0+z')| \geq c|z_j|,$$

if $|y_0+z'| \leq 100\delta$ and

$$z_j \in \mathcal{C}_j =: \{ z' \in \mathbb{R}^{d-1} : \ |z_j'| \geq rac{1}{2\sqrt{d-1}} |z'| \}.$$

The cones $\{C_j\}$ cover \mathbb{R}^{d-1} , hence there is $\{\omega_j\}_{j=1}^{d-1}$ a partition of unity of $\mathbb{R}^{d-1} \setminus \{0\}$ subordinate to C_j and consisting of degree 0 homogeneous functions smooth away from 0.

The cones $\{C_j\}$ cover \mathbb{R}^{d-1} , hence there is $\{\omega_j\}_{j=1}^{d-1}$ a partition of unity of $\mathbb{R}^{d-1} \setminus \{0\}$ subordinate to C_j and consisting of degree 0 homogeneous functions smooth away from 0.

We now isolate the critical point of F. Fix $h \in C_0^{\infty}(\mathbb{R}^{d-1})$ s.t. h(y') = 0 if $|y'| \ge 2$ and h(y') = 1 if $|y'| \le 1$.

The cones $\{C_j\}$ cover \mathbb{R}^{d-1} , hence there is $\{\omega_j\}_{j=1}^{d-1}$ a partition of unity of $\mathbb{R}^{d-1} \setminus \{0\}$ subordinate to C_j and consisting of degree 0 homogeneous functions smooth away from 0.

We now isolate the critical point of F. Fix $h \in C_0^{\infty}(\mathbb{R}^{d-1})$ s.t. h(y') = 0 if $|y'| \ge 2$ and h(y') = 1 if $|y'| \le 1$. Split $J(x) := J_1(x) + J_2(x)$, where

$$J_1(x) = \int_{|y_0+z'| < L\delta} h(\lambda^{1/2}z') P(x,z^*) \Phi(y_0+z') \exp[\lambda F(y_0+z')] dz',$$

$$J_2(x) = \sum_{j=1}^{d-1} \int_{|y_0+z'| < L\delta} [1 - h(\lambda^{1/2}z')] \omega_j(z') \cdots dz',$$

and $z^* = (y_0 + z', \psi(y_0 + z')).$

The (possible) critical point of the phase is in J_1 . Using smallness of the support of $h(\lambda^{1/2} \cdot)$ we get

$$\int_{D_arepsilon} |J_1(x)| dx \lesssim \int\limits_{D_arepsilon} \int\limits_{|z'| \leq 2\lambda^{-1/2}} rac{dz'}{|x-z^*|^{d-1}} dx \lesssim \lambda^{-(d-1)/2}.$$

The (possible) critical point of the phase is in J_1 . Using smallness of the support of $h(\lambda^{1/2} \cdot)$ we get

$$\int_{D_arepsilon} |J_1(x)| dx \lesssim \int\limits_{D_arepsilon} \int\limits_{|z'| \leq 2\lambda^{-1/2}} rac{dz'}{|x-z^*|^{d-1}} dx \lesssim \lambda^{-(d-1)/2}.$$

In J_2 we are away from singularity. Integrating by parts (in the *j*-th coordinate) twice implies

$$\int\limits_{D_arepsilon} |J_2^{(j)}(x)| \lesssim \lambda^{-2} egin{cases} \lambda^{3/2}, & d=2,\ (\lambda|\ln\lambda|), & d=3,\ \lambda, & d\geq 4. \end{cases}$$

The proof is completed by observing that $vol(D \setminus D_{\varepsilon}) \sim \varepsilon$.

Polygon

We say that D is a polygonal domain in \mathbb{R}^d $(d \ge 2)$, if it is bounded by some finite number of hyperplanes, i.e.

$$D = \bigcap_{j=1}^{N} \{ x \in \mathbb{R}^d : \nu_j \cdot x > c_j \},\$$

where $c_j \in \mathbb{R}$ and $\nu_j \in \mathbb{S}^{d-1}$.

同 ト イ ヨ ト イ ヨ ト

Diophantine vector

A vector $\nu = (\nu_1, ..., \nu_d) \in \mathbb{R}^d$ is called Diophantine if there exists $0 < \tau(\nu) < \infty$ and C > 0 such that

$$|m \cdot \nu| > \frac{C}{||m||^{\tau(\nu)}},$$

for all $m = (m_1, ..., m_d) \in \mathbb{Z}^d \setminus \{0\}$. We denote the set of such vectors by $\Omega(\tau, C)$.

Diophantine vector

A vector $\nu = (\nu_1, ..., \nu_d) \in \mathbb{R}^d$ is called Diophantine if there exists $0 < \tau(\nu) < \infty$ and C > 0 such that

$$|\boldsymbol{m}\cdot\boldsymbol{\nu}|>\frac{C}{||\boldsymbol{m}||^{\tau(\boldsymbol{\nu})}},$$

for all $m = (m_1, ..., m_d) \in \mathbb{Z}^d \setminus \{0\}$. We denote the set of such vectors by $\Omega(\tau, C)$.

For any $\tau > d - 1$ the set $\bigcup_{C>0} \Omega(\tau, C)$ has full measure in any ball of \mathbb{R}^d .

伺 ト く ヨ ト く ヨ ト

We will only consider the case of scalar equations, i.e. N = 1, the matrix of coefficients is $A = (A^{\alpha\beta})$, $1 \le \alpha, \beta \le d$, and the operator \mathcal{L} is

$$\mathcal{L}(u) = -D_{lpha}(A^{lphaeta}D_{eta}u).$$

- (E) (E)

We will only consider the case of scalar equations, i.e. N = 1, the matrix of coefficients is $A = (A^{\alpha\beta})$, $1 \le \alpha, \beta \le d$, and the operator \mathcal{L} is

$$\mathcal{L}(u) = -D_{lpha}(A^{lphaeta}D_{eta}u).$$

• (Periodicity) The boundary function g is 1-periodic:

$$g(x, y + h) = g(x, y), \ \forall x \in \overline{D}, \ y \in \mathbb{R}^d, \ h \in \mathbb{Z}^d.$$

We will only consider the case of scalar equations, i.e. N = 1, the matrix of coefficients is $A = (A^{\alpha\beta})$, $1 \le \alpha, \beta \le d$, and the operator \mathcal{L} is

$$\mathcal{L}(u) = -D_{\alpha}(A^{lphaeta}D_{eta}u).$$

• (Periodicity) The boundary function g is 1-periodic:

$$g(x, y + h) = g(x, y), \ \forall x \in \overline{D}, \ y \in \mathbb{R}^d, \ h \in \mathbb{Z}^d.$$

• (Ellipticity) There exists a constant c > 0 such that $c\xi_{\alpha}\xi_{\alpha} \leq A^{\alpha\beta}(x)\xi_{\alpha}\xi_{\beta} \leq c^{-1}\xi_{\alpha}\xi_{\alpha}, \ \forall x \in D, \ \forall \xi \in \mathbb{R}^{d}.$

We will only consider the case of scalar equations, i.e. N = 1, the matrix of coefficients is $A = (A^{\alpha\beta})$, $1 \le \alpha, \beta \le d$, and the operator \mathcal{L} is

$$\mathcal{L}(u) = -D_{\alpha}(A^{lphaeta}D_{eta}u).$$

• (Periodicity) The boundary function g is 1-periodic:

$$g(x, y + h) = g(x, y), \ \forall x \in \overline{D}, \ y \in \mathbb{R}^d, \ h \in \mathbb{Z}^d.$$

• (Ellipticity) There exists a constant c > 0 such that

$$c\xi_{\alpha}\xi_{\alpha}\leq A^{lphaeta}(x)\xi_{lpha}\xi_{eta}\leq c^{-1}\xi_{lpha}\xi_{lpha},\,\,\forall x\in D,\,\,\forall\xi\in\mathbb{R}^{d}.$$

 (Convexity) D is a bounded convex polygonal domain in ℝ^d, d ≥ 2, and for any bounding hyperplane of D its normal vector is Diophantine.

伺 と く ヨ と く ヨ と

We will only consider the case of scalar equations, i.e. N = 1, the matrix of coefficients is $A = (A^{\alpha\beta})$, $1 \le \alpha, \beta \le d$, and the operator \mathcal{L} is

$$\mathcal{L}(u) = -D_{\alpha}(A^{lphaeta}D_{eta}u).$$

• (Periodicity) The boundary function g is 1-periodic:

$$g(x, y + h) = g(x, y), \ \forall x \in \overline{D}, \ y \in \mathbb{R}^d, \ h \in \mathbb{Z}^d.$$

• (Ellipticity) There exists a constant c > 0 such that

$$c\xi_{\alpha}\xi_{\alpha}\leq A^{lphaeta}(x)\xi_{lpha}\xi_{eta}\leq c^{-1}\xi_{lpha}\xi_{lpha},\,\,\forall x\in D,\,\,\forall\xi\in\mathbb{R}^{d}.$$

- (Convexity) D is a bounded convex polygonal domain in ℝ^d, d ≥ 2, and for any bounding hyperplane of D its normal vector is Diophantine.
- (Smoothness) The boundary value g and all elements of A are sufficiently smooth.

Choose $\alpha_* > 0$ so that $\pi/(1 + \alpha_*)$ be the maximal angle between any two adjacent faces of D.

伺 ト く ヨ ト く ヨ ト

Choose $\alpha_* > 0$ so that $\pi/(1 + \alpha_*)$ be the maximal angle between any two adjacent faces of D.

Theorem (Pointwise estimates; J. Fourier Anal. Appl., '14, joint with H. Shahgholian, and P. Sjölin)

If $\alpha_* > 1$ set $\beta = 1$, otherwise let $0 < \beta < \alpha_*$ be any number. Then for any $\delta > 0$ small we have

$$|u_{\varepsilon}(x) - u_0(x)| \leq C_{\delta} \left(rac{arepsilon^{eta}}{d(x)^{eta + \delta}}
ight)^{rac{d-1}{d-1+eta}}, \qquad orall x \in D.$$

Recall that we choose $\alpha_* > 0$ so that $\pi/(1 + \alpha_*)$ is the maximal angle between any two adjacent faces of D.

伺 ト イヨト イヨト

Recall that we choose $\alpha_* > 0$ so that $\pi/(1 + \alpha_*)$ is the maximal angle between any two adjacent faces of *D*. Set

$$\gamma = \frac{(d-1)\min\{1,\alpha_*\}}{d-1+\min\{1,\alpha_*\}}.$$

Theorem (L^p-estimates; ibid)

For each $1 \leq p < \infty$, and $\delta > 0$ there exists a constant C depending on p, D, \mathcal{L} , δ but independent of $\varepsilon > 0$ such that

$$||u_{\varepsilon} - u_0||_{L^p(D)} \leq C \varepsilon^{\min\{\gamma, \frac{1}{p}\} - \delta}$$

Recall that we choose $\alpha_* > 0$ so that $\pi/(1 + \alpha_*)$ is the maximal angle between any two adjacent faces of *D*. Set

$$\gamma = \frac{(d-1)\min\{1,\alpha_*\}}{d-1+\min\{1,\alpha_*\}}.$$

Theorem (L^p-estimates; ibid)

For each $1 \le p < \infty$, and $\delta > 0$ there exists a constant C depending on p, D, \mathcal{L} , δ but independent of $\varepsilon > 0$ such that

$$||u_{\varepsilon}-u_{0}||_{L^{p}(D)}\leq C\varepsilon^{\min\{\gamma,\frac{1}{p}\}-\delta}.$$

If g depends only on its periodic variable, then we also have

$$||u_{\varepsilon} - u_0||_{L^p(D)} \ge \varepsilon^{1/p} ||g - \overline{g}||_{L^{\infty}(\mathbb{T}^d)}$$

Recall that we choose $\alpha_* > 0$ so that $\pi/(1 + \alpha_*)$ is the maximal angle between any two adjacent faces of *D*. Set

$$\gamma = \frac{(d-1)\min\{1,\alpha_*\}}{d-1+\min\{1,\alpha_*\}}.$$

Theorem (L^p -estimates; ibid)

For each $1 \leq p < \infty$, and $\delta > 0$ there exists a constant C depending on p, D, \mathcal{L} , δ but independent of $\varepsilon > 0$ such that

$$||u_{\varepsilon}-u_0||_{L^p(D)}\leq C\varepsilon^{\min\{\gamma,\frac{1}{p}\}-\delta}.$$

If g depends only on its periodic variable, then we also have

$$||u_{\varepsilon} - u_0||_{L^p(D)} \ge \varepsilon^{1/p} ||g - \overline{g}||_{L^{\infty}(\mathbb{T}^d)}$$

For large p, the exponent 1/p is optimal.

/□ ▶ < 글 ▶ < 글

Let $\omega : [0, \infty) \to (0, \infty)$ be any **modulus of continuity**, i.e. *continuous, one-to-one*, and *decreasing to 0 at infinity*.

Let $\omega : [0, \infty) \to (0, \infty)$ be any **modulus of continuity**, i.e. *continuous, one-to-one*, and *decreasing to 0 at infinity*.

Let the coefficient matrix $A = (A^{\alpha\beta}(x))^d_{\alpha,\beta=1} : X \mapsto \mathbb{R}^{d \times d}$ be defined on some domain $X \subset \mathbb{R}^d$ $(d \ge 2)$ and be such that

Let $\omega : [0, \infty) \to (0, \infty)$ be any modulus of continuity, i.e. continuous, one-to-one, and decreasing to 0 at infinity.

Let the coefficient matrix $A = (A^{\alpha\beta}(x))^d_{\alpha,\beta=1} : X \mapsto \mathbb{R}^{d \times d}$ be defined on some domain $X \subset \mathbb{R}^d$ $(d \ge 2)$ and be such that (A1) for each $1 \le \alpha, \beta \le d$ we have $A^{\alpha\beta} \in C^{\infty}(X)$,

(A2) there exist constants $0 < \lambda \leq \Lambda < \infty$ such that

$$\lambda |\xi|^2 \leq A^{lphaeta}(x)\xi_lpha\xi_eta \leq \Lambda |\xi|^2, \qquad orall x \in X, \ orall \xi \in \mathbb{R}^d.$$

伺下 イヨト イヨト ニヨ

Let $\omega : [0, \infty) \to (0, \infty)$ be any **modulus of continuity**, i.e. *continuous, one-to-one*, and *decreasing to 0 at infinity*.

Let the coefficient matrix $A = (A^{\alpha\beta}(x))^d_{\alpha,\beta=1} : X \mapsto \mathbb{R}^{d \times d}$ be defined on some domain $X \subset \mathbb{R}^d$ $(d \ge 2)$ and be such that (A1) for each $1 \le \alpha, \beta \le d$ we have $A^{\alpha\beta} \in C^{\infty}(X)$,

(A2) there exist constants $0 < \lambda \leq \Lambda < \infty$ such that

$$\lambda |\xi|^2 \leq A^{lpha eta}(x) \xi_lpha \xi_eta \leq \Lambda |\xi|^2, \qquad orall x \in X, \,\, orall \xi \in \mathbb{R}^d.$$

For $g \in C^{\infty}(\mathbb{T}^d)$, and a bounded subdomain $D \subset X$ with C^{∞} boundary consider the problem

 $-\nabla \cdot A(x) \nabla u_{\varepsilon}(x) = 0$ in D and $u_{\varepsilon}(x) = g(x/\varepsilon)$ on ∂D ,

where $\varepsilon > 0$ is a small parameter. Let also u_0 be the solution to the homogenized problem.

Theorem (A., 2015)

同 ト イ ヨ ト イ ヨ ト

There exist bounded non-empty *convex* domains $D \subset X$ and $D' \Subset D$ with C^{∞} boundaries, and a real-valued function $g \in C^{\infty}(\mathbb{T}^d)$ such that

There exist bounded non-empty *convex* domains $D \subset X$ and $D' \Subset D$ with C^{∞} boundaries, and a real-valued function $g \in C^{\infty}(\mathbb{T}^d)$ such that for u_{ε} and u_0 as above, there exists a sequence $\{\varepsilon_k\}_{k\geq 1}$ strictly decreasing to 0 so that

There exist bounded non-empty *convex* domains $D \subset X$ and $D' \subseteq D$ with C^{∞} boundaries, and a real-valued function $g \in C^{\infty}(\mathbb{T}^d)$ such that for u_{ε} and u_0 as above, there exists a sequence $\{\varepsilon_k\}_{k\geq 1}$ strictly decreasing to 0 so that

(a)
$$|u_{\varepsilon_k}(x) - u_0(x)| \ge \omega(1/\varepsilon_k), \quad \forall x \in D', \ k = 1, 2, ...$$

(b) $|u_{\varepsilon}(x) - u_0(x)| \to 0$, $\forall x \in D$, as $\varepsilon \to 0$.

There exist bounded non-empty *convex* domains $D \subset X$ and $D' \subseteq D$ with C^{∞} boundaries, and a real-valued function $g \in C^{\infty}(\mathbb{T}^d)$ such that for u_{ε} and u_0 as above, there exists a sequence $\{\varepsilon_k\}_{k\geq 1}$ strictly decreasing to 0 so that

(a)
$$|u_{\varepsilon_k}(x) - u_0(x)| \ge \omega(1/\varepsilon_k), \quad \forall x \in D', \ k = 1, 2, ...$$

(b) $|u_{\varepsilon}(x) - u_0(x)| \to 0, \quad \forall x \in D, \ \text{as } \varepsilon \to 0.$

Notice that D is NOT strictly convex.

Thank you!

Hayk Aleksanyan Boundary value homogenization of Dirichlet problem for divergen

□ ► < E ► < E</p>

э