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Fixed operator and oscillating Dirichlet data

For a vector-function u = (u1, ..., uN) define the operator

(Lu)i = −Dα[Aαβij (·)Dβuj ] := −∇ · [A(x)∇u(x)].

D ⊂ Rd (d ≥ 2) is a bounded domain,

g(x , y) : ∂D × Rd → CN is Zd -periodic in y , i.e.

g(x , y) = g(x , y + h), h ∈ Zd .

The problem: {
Luε = 0 in D,

uε(x) = g(x , x/ε) on ∂D .
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Fixed coefficients and oscillating Dirichlet data

D is bounded, smooth and strictly convex domain,

the operator is uniformly elliptic and coefficients are smooth,

the boundary data g is smooth.

Let uε be the solution to the problem with fixed operator, and
boundary data g(·, ·/ε), and u0 be the solution to the same
problem but with boundary data g(x) =

∫
Td g(x , y)dy , x ∈ ∂D.

Theorem (Pointwise estimates; J. Diff. Eq. ’13, joint with H.

Shahgholian, and P. Sjölin)

For each κ > d − 1 there exists a constant Cκ such that

|uε(x)− u0(x)| ≤ Cκ min

{
1,
ε(d−1)/2

d(x)κ

}
, ∀x ∈ D,

where d(x) is the distance of x from the boundary of D.
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Fixed coefficients and oscillating Dirichlet data

Integrating the pointwise bound we immediately get Lp-estimates

Corollary1

For each 1 ≤ p <∞ and each κ < 1
2p there exists a constant Cκ

such that
||uε − u0||Lp(D) ≤ Cκε

κ.
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...continuing (beyond strict convexity)

From the methods of the proof of Pointwise bounds we have.

Corollary2

Assume D is a bounded and smooth domain in Rd , such that there
is an integer 1 ≤ m ≤ d − 1 for which at any x ∈ ∂D at least m of
the principal curvatures of ∂D are non-zero.

Then, for each κ > m we have

(a)

|uε(x)− u0(x)| ≤ Cκ min

{
1,

εm/2

d(x)κ

}
, ∀x ∈ D.

(b) For each 1 ≤ p <∞ and each κ < 1
2p there exists a constant

Cκ such that
||uε − u0||Lp(D) ≤ Cκε

κ.
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...continuing (why strictly convex?)

Claim

Assume D ⊂ Rd(d ≥ 2) is a bounded domain with smooth
boundary, such that the Gaussian curvature of ∂D is nowhere
vanishing.
Then all principal curvatures of ∂D are strictly positive, and D is
strictly convex.

Boundedness of D =⇒ ∃x ∈ ∂D where all principal curvatures are
positive.

Hence, they have to remain positive everywhere, as otherwise the
Gaussian curvature will vanish at some point.

All principal curvatures are positive =⇒ D is locally convex.

Use Tietze-Nakajima’s theorem (1928) to pass from local to global
convexity.
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...continuing (non optimality of L2 bound)

the domain D is strictly convex.

An observation

For constant coefficients our setting is identical to the one by
Gérard-Varet and Masmoudi (Acta Math. ’12) (oscillating operator
and oscillating Dirichlet data)

Comparing L2 rates we get 1
4 >

d−1
3d+5 for d ≤ 8.

The conclusion is that d−1
3d+5 is not optimal in general.

But neither is 1
4 .
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Fixed coefficients and oscillating Dirichlet data

Theorem (Lp estimates; ARMA ’15, joint with H. Shahgholian, and P.

Sjölin)

For each 1 ≤ p <∞ there exists a constant Cp such that

||uε − u0||Lp(D) ≤ Cp


ε1/2p, d = 2,

(ε| ln ε|)1/p, d = 3,

ε1/p, d ≥ 4.

Theorem (Optimality of Lp-convergence rate; ibid)

Let N = 1, and assume that g depends only on its periodic
variable. Then for each 1 ≤ p <∞ there exists a constant Cp

independent of ε, such that

‖uε − u0‖Lp(D) ≥ Cpε
1/p‖g − g‖L∞(Td ).
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From fixed operator to oscillating

Define Pγk = xγ(0, ..., 1, ..., 0) ∈ RN with 1 in the k-th position,
1 ≤ k ≤ N, 1 ≤ γ ≤ d . Let L∗ε be the adjoint of Lε.

Theorem (homogenization of the oscillating problem; ibid)

Let d ≥ 3, and assume that L∗ε(Pγk ) = 0 for all 1 ≤ k ≤ N, and
1 ≤ γ ≤ d . Then there exists a boundary term g∗ so that if u0 is
the solution of the oscillating problem with boundary data g∗ then
for any 1 ≤ p <∞ one has

||uε − u0||Lp(D) ≤ Cp(ε[ln(1/ε)]2)1/p.

Set vγk,i (x) = (Aγ1ki , ...,A
γd
ki )(x), x ∈ Rd , where 1 ≤ k, i ≤ N,

1 ≤ γ ≤ d . Then L∗ε(Pγk ) ≡ 0 is equivalent to

div(vγk,i )(x) = 0, x ∈ Rd , 1 ≤ k, i ≤ N, 1 ≤ γ ≤ d .

For scalar equations (N = 1) the condition means that rows of A
must be divergence free vector fields.
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From fixed operator to oscillating

The proof is based on our method for fixed operator combined
with a result due to Kenig-Lin-Shen (CPAM ’14) for oscillating
operator and fixed data.

We can compute the homogenized boundary data in this case.
Set

h(y) := (hij(y))N×N = (A0,αβnα(y)nβ(y)), y ∈ ∂D.

Then for g∗(y) = (g∗i (y))Ni=1 we have

g∗i (y) = hik(y)nα(y)nβ(y)
∑
m∈Zd

cm(Aαβkj )c−m(gj ; y), y ∈ ∂D,

where n(y) = (nα(y))dα=1 is the unit outward normal at y .
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m∈Zd

cm(Aαβkj )c−m(gj ; y), y ∈ ∂D,

where n(y) = (nα(y))dα=1 is the unit outward normal at y .
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The proof of lower bounds

The Poisson kernel P for the operator −∇ · A∇ satisfies

|P(x , y)| . dist(x , ∂D)

|x − y |d
, x ∈ D, y ∈ ∂D.

If u solves −∇·A(x)∇u(x) = 0 in D and u(x) = g(x) on ∂D then

Concentration inequality

There are positive constants c0,C0 depending on A,D and d only,
s.t. for any δ > 0 small and any ξ ∈ ∂D one has

|u(x)− g(ξ)| ≤ 1

8
||g ||L∞ + C0δLip(g),

for all x ∈ D with |x − ξ| ≤ c0δ.

The proof is via integral representation of u and the distance
estimate for P.
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The proof of lower bounds

Choosing δ = a0ε with a0 > 0 a small constant, we see that

|uε(x)− gε(ξ)| ≤ 1

8
||g ||L∞(Td ) + C0a0εLip(g)

1

ε
≤ 1

4
||g ||L∞(Td ),

for ∀ξ ∈ ∂D and ∀x ∈ D satisfying |x − ξ| ≤ a0ε.

The conclusion

If |gε(ξ)| is large then |uε(x)| remains large in ε-neighbourhood of
ξ ∈ ∂D.

We need to understand the distribution of gε on ∂D, or
equivalently 1

ε∂D mod Zd .
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The proof of lower bounds

Equidistribution of scaled surfaces

Let D ⊂ Rd be a bounded domain which is strictly convex and has
smooth boundary. Then for any ball B ⊂ Td one has

|B| = lim
λ→∞

σ{x ∈ ∂D : λx mod Zd ∈ B}
σ(∂D)

.

For each non-zero m ∈ Zd one has∣∣∣∣∫
∂D

e2πiλx ·mdσ(x)

∣∣∣∣ = |σ̂(λm)| . (λ||m||)−(d−1)/2,

where the last estimate is due to convexity.
From here (through Fourier expansion) for any f ∈ C∞(Td) we get∫

Td

f (x)dx =
1

σ(∂D)

∫
∂D

f (λx)dσ(x).
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The proof of lower bounds

To pass to IB (which is now defined on Td) fix a sequence of
functions fn,Fn ∈ C∞(Td) s.t.

(a) fn(x) ≤ IB(x) ≤ Fn(x) for all x ∈ Td ,

(b)
∫
Td (Fn(x)− fn(x))dx → 0, n→∞.

Hence, using the case of smooth function proved above, we get∫
Td

IB(x)dx =
1

σ(∂D)

∫
∂D

IB(λx)dσ(x),

and we are done.
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The proof of lower bounds

Assume
∫
Td g(x)dx = 0.

Hence u0 = 0 (the homogenized
solution).
Consider the set

B = {x ∈ Td : |g(x)| > ||g ||L∞(Td )/2}.

WLOG, we may assume that B is a ball.
Then, for ε > 0 small we have

σ{x ∈ ∂D : (1/ε)x mod Zd ∈ B}
σ(∂D)

>
1

2
|B|.

Fix y ∈ ∂D such that |gε(y)| > ||g ||L∞/2. Hence

|uε(x)| ≥ |gε(y)| − |uε(x)− gε(y)| ≥ 1

2
||g ||L∞ −

1

4
||g ||L∞ ,

for all |x − y | ≤ a0ε. Thus, on a fixed portion of an
ε-neighbourhood of ∂D we get |uε| & ε. Integrating on that
portion gives the desired lower bound.
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The strategy of the proof of upper bounds

Poisson representation

uε(x)− u0(x) =
∫
∂D

P(x , y)[gε(y)− g0(y)]dσ(y), x ∈ D.

Competing quantities

(a) Singularity (regularity) of the Poisson kernel

(b) Cancellations coming from
∫
∂D [gε(y)− g0(y)]dσ(y).

Determining factors

use PDE + the geometry of the boundary to quantify (a) and
(b)

careful trade-off between (a) and (b).
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The scheme of the proof: Reduction to local graphs

∂D is locally a graph of a smooth function. Hence, ∃r0 > 0 small
s.t. ∀z ∈ ∂D ∃R : Rd → Rd orthogonal transformation s.t.

R(∂D − z) ∩ B(0, r0) = {(y ′, ψ(y ′)) : |y ′| ≤ 10r0} ∩ B(0, r0),

where y ′ = (y1, ..., yd−1) ∈ Rd−1, ψ(0) = |∇ψ(0)| = 0 and

Hessψ(0) = diag(a1, ..., ad−1),

with 0 < c0 ≤ a1 ≤ ... ≤ ad−1 ≤ C0 (lower bound due to
convexity). Fix δ > 0 and K1 < 1 small s.t.

(a) K1|y ′| ≤ |∇ψ(y ′)| ≤ K2|y2| for all |y ′| ≤ K1
4K2

δ

(b) |Hessψ(y ′)− Hessψ(0)| ≤ a1
1000d for all |y ′| ≤ 100δ,

(c) ∇ψ : B(0, δ) 7→ M is one-to-one and onto for some
M⊃ B(0,K1δ).
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(b) |Hessψ(y ′)− Hessψ(0)| ≤ a1
1000d for all |y ′| ≤ 100δ,

(c) ∇ψ : B(0, δ) 7→ M is one-to-one and onto for some
M⊃ B(0,K1δ).
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The scheme of the proof: Reduction to local graphs

For L = K1
4K2

and a function ϕ ∈ C∞0 (B(z , Lδ)), where z ∈ ∂D,
consider

I (x) =

∫
∂D

P(x , y)[gε(y)− g(y)]ϕ(y)dσ(y).

Translating the origin onto z and rotating the coordinate system
by R, we may assume WLOG, that z = 0 and R = Id . Thus,
passing to volume integral in I we get

I (x) =

∫
|y ′|<Lδ

P(x , (y ′, ψ(y ′)))[gε − g ](y ′, ψ(y ′))ϕ̃(y ′, ψ(y ′))dy ′.
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The scheme of the proof: Reduction to oscillatory integrals

g is smooth, hence

[gε − g ](y ′, ψ(y ′)) =
∑

m∈Zd\{0}

cm(y ′, ψ(y ′))exp

[
1

ε
m · (y ′, ψ(y ′))

]
.

Plugging this expansion into I (x), things are reduced to decay
estimates for integrals of the form

J(x) =

∫
|y ′|<Lδ

P(x , (y ′, ψ(y ′)))Φ(y ′, ψ(y ′))exp[λF (y ′)]dy ′,

as 1/ε =: λ→∞, where F (y ′) = n′ · y ′ + ndψ(y ′), |(n′, nd)| = 1,
and Φ = 0 on |y ′| = Lδ.
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The scheme of the proof: Critical points of the phase

Case 1: |n′| ≥ K1δ/2.

Then, for all |y ′| ≤ Lδ we have

|∇F (y ′)| = |n′ + nd∇ψ(y ′)| ≥ |n′| − |nd |K2|y ′| ≥
K1δ

2
− K2

K1

4K2
δ =

K1δ

4
> 0

Thus, NO critical points on the support of Φ.
Hence, integrating by parts in J twice we get

|J(x)| . λ−2
∫
|y ′|<Lδ

dy ′

|x − (y ′, ψ(y ′))|d−1+2
.

For Dε = {x ∈ D : dist(x , ∂D) ≥ ε} we obtain∫
Dε

|J(x)|dx . λ−2
∫
|w |≥ε

dw

|w |d+1
. λ−2

1

ε
. λ−1.
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The scheme of the proof: Critical points of the phase

Case 2: |n′| < K1δ/2.

Since |(n′, nd)| = 1 we have |nd | > 1/2,
therefore ∣∣∣∣ n′nd

∣∣∣∣ < K1δ

2(1/2)
= K1δ,

hence there is a unique y0 ∈ B(0, δ) s.t. ∇ψ(y0) = − n′

nd
, so

∇F (y0) = 0.
Since Hessψ(y ′) ≈ Hessψ(0) for |y ′| ≤ 100δ, by Mean-Value
Theorem for all 1 ≤ j ≤ d − 1 we get

|(∂jF )(y0 + z ′)| ≥ c |zj |,

if |y0 + z ′| ≤ 100δ and

zj ∈ Cj =: {z ′ ∈ Rd−1 : |z ′j | ≥
1

2
√
d − 1

|z ′|}.
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The scheme of the proof: Critical points of the phase

The cones {Cj} cover Rd−1, hence there is {ωj}d−1j=1 a partition of

unity of Rd−1 \ {0} subordinate to Cj and consisting of degree 0
homogeneous functions smooth away from 0.

We now isolate the critical point of F . Fix h ∈ C∞0 (Rd−1) s.t.
h(y ′) = 0 if |y ′| ≥ 2 and h(y ′) = 1 if |y ′| ≤ 1.

Split J(x) := J1(x) + J2(x), where

J1(x) =

∫
|y0+z ′|<Lδ

h(λ1/2z ′)P(x , z∗)Φ(y0 + z ′)exp[λF (y0 + z ′)]dz ′,

J2(x) =
d−1∑
j=1

∫
|y0+z ′|<Lδ

[1− h(λ1/2z ′)]ωj(z
′) · · · dz ′,

and z∗ = (y0 + z ′, ψ(y0 + z ′)).
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The scheme of the proof: Critical points of the phase

The (possible) critical point of the phase is in J1.
Using smallness of the support of h(λ1/2·) we get∫

Dε

|J1(x)|dx .
∫
Dε

∫
|z ′|≤2λ−1/2

dz ′

|x − z∗|d−1
dx . λ−(d−1)/2.

In J2 we are away from singularity. Integrating by parts (in the j-th
coordinate) twice implies

∫
Dε

|J(j)2 (x)| . λ−2


λ3/2, d = 2,

(λ| lnλ|), d = 3,

λ, d ≥ 4.

The proof is completed by observing that vol(D \ Dε) ∼ ε.
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Flat geometries

Polygon

We say that D is a polygonal domain in Rd (d ≥ 2), if it is
bounded by some finite number of hyperplanes, i.e.

D =
N⋂
j=1

{x ∈ Rd : νj · x > cj},

where cj ∈ R and νj ∈ Sd−1.
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Convex polygons

Diophantine vector

A vector ν = (ν1, ..., νd) ∈ Rd is called Diophantine if there exists
0 < τ(ν) <∞ and C > 0 such that

|m · ν| > C

||m||τ(ν)
,

for all m = (m1, ...,md) ∈ Zd \ {0}.
We denote the set of such vectors by Ω(τ,C ).

For any τ > d − 1 the set
⋃

C>0

Ω(τ,C ) has full measure in any ball

of Rd .
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Assumptions

We will only consider the case of scalar equations, i.e. N = 1, the
matrix of coefficients is A = (Aαβ), 1 ≤ α, β ≤ d , and the
operator L is

L(u) = −Dα(AαβDβu).

(Periodicity) The boundary function g is 1-periodic:

g(x , y + h) = g(x , y), ∀x ∈ D, y ∈ Rd , h ∈ Zd .

(Ellipticity) There exists a constant c > 0 such that

cξαξα ≤ Aαβ(x)ξαξβ ≤ c−1ξαξα, ∀x ∈ D, ∀ξ ∈ Rd .

(Convexity) D is a bounded convex polygonal domain in Rd ,
d ≥ 2, and for any bounding hyperplane of D its normal
vector is Diophantine.

(Smoothness) The boundary value g and all elements of A are
sufficiently smooth.
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Pointwise convergence

Choose α∗ > 0 so that π/(1 + α∗) be the maximal angle between
any two adjacent faces of D.

Theorem (Pointwise estimates; J. Fourier Anal. Appl., ’14, joint with H.

Shahgholian, and P. Sjölin)

If α∗ > 1 set β = 1, otherwise let 0 < β < α∗ be any number.
Then for any δ > 0 small we have

|uε(x)− u0(x)| ≤ Cδ

(
εβ

d(x)β+δ

) d−1
d−1+β

, ∀x ∈ D.
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Lp bounds for polygonal domains

Recall that we choose α∗ > 0 so that π/(1 + α∗) is the maximal
angle between any two adjacent faces of D.

Set

γ =
(d − 1) min{1, α∗}
d − 1 + min{1, α∗}

.

Theorem (Lp-estimates; ibid)

For each 1 ≤ p <∞, and δ > 0 there exists a constant C
depending on p, D, L, δ but independent of ε > 0 such that

||uε − u0||Lp(D) ≤ Cεmin{γ, 1
p
}−δ

.

If g depends only on its periodic variable, then we also have

||uε − u0||Lp(D) ≥ ε1/p||g − g ||L∞(Td )

For large p, the exponent 1/p is optimal.
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How important is the geometry of the domain ?

Let ω : [0,∞)→ (0,∞) be any modulus of continuity, i.e.
continuous, one-to-one, and decreasing to 0 at infinity.

Let the coefficient matrix A = (Aαβ(x))dα,β=1 : X 7→ Rd×d be

defined on some domain X ⊂ Rd (d ≥ 2) and be such that

(A1) for each 1 ≤ α, β ≤ d we have Aαβ ∈ C∞(X ),

(A2) there exist constants 0 < λ ≤ Λ <∞ such that

λ|ξ|2 ≤ Aαβ(x)ξαξβ ≤ Λ|ξ|2, ∀x ∈ X , ∀ξ ∈ Rd .

For g ∈ C∞(Td), and a bounded subdomain D ⊂ X with C∞

boundary consider the problem

−∇ · A(x)∇uε(x) = 0 in D and uε(x) = g(x/ε) on ∂D,

where ε > 0 is a small parameter. Let also u0 be the solution to
the homogenized problem.
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How important is the geometry of the domain ?

Theorem (A., 2015)

There exist bounded non-empty convex domains D ⊂ X and
D ′ b D with C∞ boundaries, and a real-valued function
g ∈ C∞(Td) such that for uε and u0 as above, there exists a
sequence {εk}k≥1 strictly decreasing to 0 so that

(a) |uεk (x)− u0(x)| ≥ ω(1/εk), ∀x ∈ D ′, k = 1, 2, ...

(b) |uε(x)− u0(x)| → 0, ∀x ∈ D, as ε→ 0.

Notice that D is NOT strictly convex.
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Thank you!
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