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What is a K-surface?

Definition

A smooth compact hypersurface in R+ (d > 2) having constant
Gauss curvature K.

If NO boundary, then a K-surface (K > 0) bounds a convex body.

The central question

How does the boundary of a K-surface look like?

Precisely, given a disjoint collection ' = {I'1,...,[,} of
codimension 2 submanifolds of R9*!, decide if there exists a
K-surface of Rt (in general immersed) having I as its boundary.

S.-T. Yau, Problem N26, of his list of open problems '90

What conditions should be imposed on a Jordan curve in R3 so
that it can be a boundary of a disk with a given metric of positive
curvature?
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Boundary of a K-surface: necessary conditions

o In R3 if the curve I bounds a K-surface, with K > 0, then I
is free of inflection points. In higher dimensions, the analogue
is that the second fundamental form does not degenerate.

@ (H. Rosenberg, '93) there are topological obstructions: the
self-linking number of ' must be 0.
NOT a sufficient condition, [H. Gluck and L. Pan, '98]

o (M. Ghomi; JDG '17) the torsion of any closed curve in R3
bounding a simply connected locally convex surface vanishes
at least 4 times

e answers a question of H. Rosenberg from 1993

e is a far reaching extension of the classical 4-vertex theorem, in
particular extends the 4-vertex theorem of V.D. Sedykh from
1994
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Some existence results

o (L. Caffarelli, L. Nirenberg, J. Spruck; CPAM 1984)
If I  R? is a smooth curve that projects one-to-one onto 9%,
for some Q2 smooth, strictly convex planar domain, then I
bounds a K-surface that is a graph over Q provided K > 0 is
small enough.
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Some existence results

o (L. Caffarelli, L. Nirenberg, J. Spruck; CPAM 1984)
If I  R? is a smooth curve that projects one-to-one onto 9%,
for some Q2 smooth, strictly convex planar domain, then I
bounds a K-surface that is a graph over Q provided K > 0 is
small enough.

e (D. Hoffman, H. Rosenberg, J. Spruck; CPAM 1992)
If C;, G5 are two closed strictly convex curves in parallel
planes, such that the projection of one is strictly inside the
other. Then, for K > 0 small enough, there is a K-surface
with boundary { G, G }.

e (B. Guan, J. Spruck; Annals 1993) For each integer n > 0,
there exists an embedded K-surface of genus n.

o Further remarkable results by [B. Guan, J. Spruck; JDG 2002,
2004, M. Ghomi; JDG 2001, and other authors...]
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closed smooth embedded submanifolds of R9*t1, and let Ty be a
smooth embedded submanifold in R9*! of codimension 1. Fix also

an angle 8 > 0.
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Can we leave part of the boundary free?

Fix ' ={ly,...,[ 1} a collection of disjoint (d — 1)-dimensional
closed smooth embedded submanifolds of R9*t1, and let Ty be a
smooth embedded submanifold in R9*! of codimension 1. Fix also
an angle 8 > 0.

K-surfaces with (Bernoulli) free boundary

What conditions should be imposed on I, Ty, and 6 in order to get
a K-surface spanning I and hitting T at an angle 6 7

A model case:

o (The boundary) Take I' = 9Q where Q C R x {hg} is strictly
convex, and hg > 0.

o (The target manifold) To = R9 x {0}.
o (The hitting angle) 6 = arccos(1 + \g) /2, for some Ao > 0.
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Our setting: formal statement

For a convex domain Q C R9 x {0} and parameters hg, Ao > 0,
Ko > 0, find a concave function v : R x {0} — R, such that

detD?(—u) = Ko(|Vul), in {u>0}\Q,
u = hg, on 012,
|Vu| = o, on [y

where ) > 0 is a prescribed real-valued C* function,
Fy=0{u>0}\Q
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Our setting: formal statement

For a convex domain Q C R9 x {0} and parameters hg, Ao > 0,
Ko > 0, find a concave function v : R x {0} — R, such that

detD?(—u) = Ko(|Vul), in {u>0}\Q,
u = hg, on 012,
|Vu| = o, on [y

where ) > 0 is a prescribed real-valued C* function,
M, =0{u>0}\ Q. Geometry relevant choices:

@ (the homogeneous equation) Ky = 0,

@ (constant curvature measure) ¢ = 1,

o (constant Gauss curvature) ¥(t) = (1 4 t2)(d+2)/2

For p-Laplace equation, see [A. Henrot and H. Shahgholian; J.
Reine und Angew. Math 2000], although methods and motivation
are entirely different here. 6/25

Hayk Aleksanyan K-surfaces with free boundaries



Weak solutions (a la A.D. Aleksandrov)

7/25

Hayk Aleksanyan K-surfaces with free boundaries



Weak solutions (a la A.D. Aleksandrov)

The gradient mapping

Let u: Q2 — R be convex, xg € 2.

7/25

Hayk Aleksanyan K-surfaces with free boundaries



Weak solutions (a la A.D. Aleksandrov)

The gradient mapping

Let u: Q — R be convex, xg € €2. The set of slopes

weo () = {p € RY: u(x) > u(x0) +p-(x —x), Vx € Q}

is called the gradient mapping of u at xg.

7/25

Hayk Aleksanyan K-surfaces with free boundaries



Weak solutions (a la A.D. Aleksandrov)

The gradient mapping

Let u: Q — R be convex, xg € €2. The set of slopes

weo () = {p € RY: u(x) > u(x0) +p-(x —x), Vx € Q}

is called the gradient mapping of u at xg.

For a set E C Q set we(u) = U wx(v).
x€E

7/25

Hayk Aleksanyan K-surfaces with free boundaries



Weak solutions (a la A.D. Aleksandrov)

The gradient mapping

Let u: Q — R be convex, xg € €2. The set of slopes
weo () = {p € RY: u(x) > u(x0) +p-(x —x), Vx € Q}
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The Monge-Ampere measure

We call a convex u : E — R a solution to detD?u = Kot(|Vul|) on
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The gradient mapping

Let u: Q — R be convex, xg € €2. The set of slopes
weo () = {p € RY: u(x) > u(x0) +p-(x —x), Vx € Q}
is called the gradient mapping of u at xg.

For a set E C Q set we(u) = U wx(v).
x€E

The Monge-Ampere measure

We call a convex u : E — R a solution to detD?u = Kot(|Vul|) on
3 dg _ _
E, if for any Borel set B C E one has f) @D = Ko|B].

wp(u
The Lh.s. is called the Monge-Ampére measure.
The MA measure is weakly* continuous.
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e Fix any regular point xg € T',, i.e. [, has a well-defined inner
normal (call it v).

@ The condition |Vu(xp)| = Ao means a“(xo) = Ao, which
always exists: by concavity of u, for any to > t; > 0 we get

t t t
u(xo+tiv) =u <<l - 1) X0 + —l(xo + t21/)> > —lu(xo—i—tzl/).
t t2 2

e (Geometric reformulation) There is a unique support plane
G in RY x {0} for I', at xo.

@ Any support hyperplane H to the graph(u) at
(x0,0) € RY x R, must pass through G.

@ Hence, there is one free parameter, the slope of H.

@ The extreme H (i.e. the “most inclined on the graph”) must

have slope Ag.
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The main results: homogeneous case

Theorem A (Ko = 0, the homogeneous case)

Let Ko =0, and Q C RY be bounded convex Cl!-regular domain.
Then, there exists a unique weak solution wu.
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@ if in addition, € is strictly convex, then so is the free boundary.
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Theorem A (Ko = 0, the homogeneous case)

Let Ko =0, and Q C RY be bounded convex Cl!-regular domain.
Then, there exists a unique weak solution u. Moreover

@ the graph of v is a ruled surface,
o uis CHon {u>0}\Q,
@ the free boundary ', is C11,

@ if in addition, € is strictly convex, then so is the free boundary.

Example (truncated cone)

Take Q = B(xp, r) in RY (d > 2). Fix \g > 0 and hg = 1. Then

A 1
W) = 1420 — 22| — o). rSlx—Xo|§f<1+>
r Ao

is the solution, with free boundary |x — xo| = r(1 + 1/Xo).
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The main results: elliptic case

Theorem B (Ky > 0, the strictly convex (elliptic) case)

Let Ko > 0, and Q C RY be bounded strictly convex smooth
domain. Let also ¢ : R4 — (0, 00) be non-decreasing and smooth.

10/25

Hayk Aleksanyan K-surfaces with free boundaries



The main results: elliptic case

Theorem B (Ky > 0, the strictly convex (elliptic) case)

Let Ko > 0, and Q C RY be bounded strictly convex smooth
domain. Let also ¢ : R4 — (0, 00) be non-decreasing and smooth.

Then, there exists a small constant K = K(£,1, A\g) > 0, such
that for any Ko € (0, K) there exists a weak solution u, which is
C*> on {u > 0} \ Q and the free boundary I, is C* as well.
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On NON-existence
The smallness of Ky cannot be eliminated entirely!
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The main results: elliptic case

Theorem B (Ky > 0, the strictly convex (elliptic) case)

Let Ko > 0, and Q C RY be bounded strictly convex smooth
domain. Let also ¢ : R4 — (0, 00) be non-decreasing and smooth.

Then, there exists a small constant K = K(£,1, A\g) > 0, such
that for any Ky € (0, K) there exists a weak solution u, which is
C> on {u > 0} \ Q and the free boundary ', is C* as well.

On NON-existence
The smallness of Ky cannot be eliminated entirely!

Work out the case of radial solutions (when Q is a ball) by hand.
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Some ideas of the proofs: the homogeneous case

A scematic view for the homogeneous case.
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Convex polygonal domains

o Let Q c R x {0} be a convex polygon, and let Fi, ..., F, be
the facets of Q :=Q x {hp}.
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Convex polygonal domains

o Let Q c R x {0} be a convex polygon, and let Fi, ..., F, be
the facets of Q :=Q x {hp}.

@ For each 1 </ < n let H; be the hyperplane in RI+1 passing
through F; and having slope ).
Identify each H; with the linear function.

o Then u(x) = infi<i<, Hi(x), x € RY, solves the homogeneous
problem.

@ The most delicate part is to show that there is no X € RI+1
in the strip 0 < X441 < hg where more than d planes meet,
i.e. the graph of u has NO vertex (a geometric proof).
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Approximation by polygons: existence

e Let Q be bounded, convex and C!. For each X € Q there is
a support hyperplane Hy, in RY+1 through Xp and having
slope Ag.
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Approximation by polygons: existence

e Let Q be bounded, convex and C!. For each X € Q there is
a support hyperplane Hy, in RY+1 through Xp and having
slope Ag.

@ Define
ho(x) = inf_ Hx,(x), x€R7.
Xo€0Q2

The infimum does not collapse due to the uniform bound on
the slopes.
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Approximation by polygons: existence

e Let Q be bounded, convex and C!. For each X € Q there is
a support hyperplane Hy, in RY+1 through Xp and having
slope Ag.

@ Define
h(x) = inf_Hx(x), x€R.
Xo€0Q2
The infimum does not collapse due to the uniform bound on
the slopes.

@ Approximate Q2 by polygonal domains, and for each polygon
take the solution constructed above. Then, the limit will
converge to h, and will give a weak solution for the
homogeneous problem (uses the weak* continuity of MA
measure).
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Every weak solution is a ruled surface

Proposition (Line segments on the graph)

Let u be any weak solution, and assume Xj is on the graph of w.
Then, there is a line segment though Xy joining the free boundary
with R? x {ho} and lying entirely on the graph of u.
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e For a weak solution u fix Xp in the interior of M := graph(u).
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Then, there is a line segment though Xy joining the free boundary
with R? x {ho} and lying entirely on the graph of u.

Proof.
e For a weak solution u fix Xp in the interior of M := graph(u).

@ Fix a support hyperplane I to M through Xy, and define
X := Hull(N N M); we need to see that A" intersects the ho-

and O-level surfaces of u.
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Every weak solution is a ruled surface

Proposition (Line segments on the graph)

Let u be any weak solution, and assume Xj is on the graph of w.
Then, there is a line segment though Xp joining the free boundary
with R? x {ho} and lying entirely on the graph of u.

Proof.
e For a weak solution u fix Xp in the interior of M := graph(u).
@ Fix a support hyperplane I to M through Xy, and define
X := Hull(N N M); we need to see that A" intersects the ho-
and 0-level surfaces of u.

@ Assume NOT, then we can squeeze a strictly convex surface
“between” Il and M (using “smoothing of polytopes” after
M. Ghomi), violating the condition detD?u = 0.
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Every weak solution is a ruled surface

Proposition (Line segments on the graph)

Let u be any weak solution, and assume Xj is on the graph of w.
Then, there is a line segment though Xy joining the free boundary
with R? x {ho} and lying entirely on the graph of u.

Proof.

e For a weak solution u fix Xp in the interior of M := graph(u).

@ Fix a support hyperplane I to M through Xy, and define
X := Hull(N N M); we need to see that A" intersects the ho-
and O-level surfaces of u.

@ Assume NOT, then we can squeeze a strictly convex surface
“between” Il and M (using “smoothing of polytopes” after
M. Ghomi), violating the condition detD?u = 0.

@ The case when Xp € QU I, follows by approximation. [J
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Comparison principle

Let Q1 C Q> be convex domains, and let a concave function u; be
a weak solutions for Q;, i = 1,2. Define w; := Hull(';). Then
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Comparison principle

Let Q1 C Q> be convex domains, and let a concave function u; be
a weak solutions for Q;, i = 1,2. Define w; := Hull(';). Then

o if either of ['; is C1, then wy C wo,

o if either of u; is C! in {u; > 0} \ Q, then U; < Uy, where U;
is the extension of u; into €; as identically hg.
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Comparison principle

Proposition
Let Q1 C Q> be convex domains, and let a concave function u; be
a weak solutions for Q;, i = 1,2. Define w; := Hull(';). Then
o if either of ['; is C1, then wy C wp,
o if either of u; is C! in {u; > 0} \ Q, then U; < Uy, where U;
is the extension of u; into €; as identically hg.

Proof. Argue by contradiction, and use the existence of line
segments on the graphs. [.
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Regularity of a weak solution and free boundary

Proposition

Let Q be bounded convex Cl!-regular domain, and let
h.(x) = inf Hx,(x), x € RY. Then, g, is CY1 and h, is C11
in R\ Q.

Xoeaﬁ
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Regularity of a weak solution and free boundary

Proposition

Let Q be bounded convex Cl!-regular domain, and let
h.(x) = inf Hx,(x), x € RY. Then, g, is CY1 and h, is C11
in R\ Q.

Xoeaﬁ

The proof: follow the shared line segment.
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Uniqueness and strict convexity
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17/25

Hayk Aleksanyan K-surfaces with free boundaries



Uniqueness and strict convexity

o If Qis CY1, then h, is CY!, and has C! free boundary.
Then, any weak solution can be compared with h,, hence the
uniqueness.
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Uniqueness and strict convexity

o If Qis CY1, then h, is CY!, and has C! free boundary.
Then, any weak solution can be compared with h,, hence the
uniqueness.

@ Strict convexity of h, follows by comparison with conical
solutions.
A quantitative version of strict convexity follows from
Blaschke inclusion principle and comparison of the solution
with conical barriers (from above).
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Elliptic case, Ky > 0, the strategy

@ (The class of super-solutions ) concave functions
u € Wi (Ko, Mo, Q) s.t. u= hg on 9Q and

detD?(—u) > Kotp(|Vu|) on {u > 0}\Q and |Vu| < Ao on T,.

18/25

Hayk Aleksanyan K-surfaces with free boundaries



Elliptic case, Ky > 0, the strategy

@ (The class of super-solutions ) concave functions
u € Wi (Ko, Mo, Q) s.t. u= hg on 9Q and

detD?(—u) > Kotp(|Vu|) on {u > 0}\Q and |Vu| < Ao on T,.

Show that W # () (by construction, an envelope of certain
paraboloids).

18/25

Hayk Aleksanyan K-surfaces with free boundaries



Elliptic case, Ky > 0, the strategy

@ (The class of super-solutions ) concave functions
u € Wi (Ko, Mo, Q) s.t. u= hg on 9Q and

detD?(—u) > Kotp(|Vu|) on {u > 0}\Q and |Vu| < Ao on T,.
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W, and that it solves the problem. The free boundary
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extension).
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Elliptic case, Ky > 0, the strategy

@ (The class of super-solutions ) concave functions
u € Wi (Ko, Mo, Q) s.t. u= hg on 9Q and

detD?(—u) > Kotp(|Vu|) on {u > 0}\Q and |Vu| < Ao on T,.

Show that W # () (by construction, an envelope of certain
paraboloids).

@ (Perron’s method) Show that there is a minimal element in
W, and that it solves the problem. The free boundary
condition is the most delicate part (is being handled by a
special type of extension, which we named Blaschke
extension).

@ (For smoothness of the free boundary) extend the solution
beyond the free boundary, to reduce the matters to interior

case.
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Construction of super-solution

Assumptions: € is bounded, strictly convex and C?,
1 is non-decreasing (need to adjust the free boundary condition)
and smooth.
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Construction of super-solution

Assumptions: € is bounded, strictly convex and C?,
1 is non-decreasing (need to adjust the free boundary condition)
and smooth.

@ Let kg > 0 be the smallest principal curvature of 9Q2. Then, Q
rolls freely inside a ball of radius ry :=1/ko (W. Blaschke's
rolling ball theorem (2d case), and [J. Rauch, JDG, 1974] for
d > 2). (Intuition: A “more curved” fits inside the “less
curved” one).
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rolling ball theorem (2d case), and [J. Rauch, JDG, 1974] for
d > 2). (Intuition: A “more curved” fits inside the “less
curved” one).

e If xp € 00N is fixed, and the ball B = B(z, ry) touches Q at xp
and Q C B, then the paraboloid P(x) = hg + arg — a|x — z|?
(with a properly chosen v > 0) satisfies
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rolls freely inside a ball of radius ry :=1/ko (W. Blaschke's
rolling ball theorem (2d case), and [J. Rauch, JDG, 1974] for
d > 2). (Intuition: A “more curved” fits inside the “less
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Construction of super-solution

Assumptions: € is bounded, strictly convex and C?,
1 is non-decreasing (need to adjust the free boundary condition)
and smooth.

@ Let kg > 0 be the smallest principal curvature of 9Q2. Then, Q
rolls freely inside a ball of radius ry :=1/ko (W. Blaschke's
rolling ball theorem (2d case), and [J. Rauch, JDG, 1974] for
d > 2). (Intuition: A “more curved” fits inside the “less
curved” one).

e If xp € 00N is fixed, and the ball B = B(z, ry) touches Q at xp
and Q C B, then the paraboloid P(x) = hg + arg — a|x — z|?
(with a properly chosen v > 0) satisfies

o P(xp) = ho and P(x) > hy on Q,
o detD?(—P) > Kotb(|VP|) on {P > 0}.
o |VP| < Ao on 9{P > 0}.
@ Do this for a dense set of points, and take the infimum: gives

an element of W,
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Perron in action

@ Any element of W_ is larger than the solution to the
homogeneous equation. Hence,

u(x) := Wien\g,+ w(x), x € RY,

does not collapse.
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@ Show an existence of a minimizing sequence, and hence
u. € W, (plus strict concavity of wuy).

20/25

Hayk Aleksanyan K-surfaces with free boundaries



Perron in action

@ Any element of W_ is larger than the solution to the
homogeneous equation. Hence,

uy(x) == Wien%g,+ w(x), x € RY,

does not collapse.
@ Show an existence of a minimizing sequence, and hence
u. € W, (plus strict concavity of wuy).

@ Solving the Dirichlet problem for affine boundary data, and
using strong comparison principle, show u, solves the equation

in {u, >0} \ Q.
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Perron in action

@ Any element of W_ is larger than the solution to the
homogeneous equation. Hence,

u(x) := Wien\g,+ w(x), x € RY,

does not collapse.

@ Show an existence of a minimizing sequence, and hence
u. € W, (plus strict concavity of wuy).

@ Solving the Dirichlet problem for affine boundary data, and
using strong comparison principle, show u, solves the equation
in {u, >0} \ Q.

o Still need to show that |Vu,| = A\g on the free boundary (we
have only < everywhere by construction).
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Blaschke extension and the free boundary condition

Reflection of a surface at a single point on the free boundary.
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@ Define a convex body S bounded by the graph(u,) if
0< Xd+1 < hg, Q x {ho} if Xd+1 = hg, and when Xd+1 < ho
take the intersection of all extreme halfspaces at I, .
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@ Foreach x e Iy, if Hy is an extreme supporting hyperplane
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@ Define a convex body S bounded by the graph(u,) if
0< Xd+1 < hg, Q x {ho} if Xd+1 = hg, and when Xd+1 < ho
take the intersection of all extreme halfspaces at I, .

@ Foreach x e Iy, if Hy is an extreme supporting hyperplane
to the graph, define Hi- passing through H, N (R? x {0}) and
the normal to H,.

o define Sy as the mirror reflection of S with respect to Hy-.

e Fix xp € I'y,, and take a dense sequence x; C ', near x.
Define a nested sequence of convex bodies

m
m _ ¢+ -
S"=5n(S.
Jj=1

and take a limit as m — oo. Call the limit convex body Sg
the Blaschke reflection body.
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@ Show that the boundary of Sg is a graph over RY close to xo.
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@ Show that the boundary of Sg is a graph over RY close to xo.

@ Assume at xp € [, we have |Vu.(xp)| = A < Ao. Then a
slight tilt of the extreme support plane H,,, say H, will
intersect a cap from Sg.
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@ Show that the boundary of Sg is a graph over RY close to xo.

@ Assume at xp € [, we have |Vu.(xp)| = A < Ao. Then a
slight tilt of the extreme support plane H,,, say H, will
intersect a cap from Sg.

@ Slightly translate H parallel towards €2, to Hs, and in a slab
between H and Hs replace the boundary of Sg by an exact
solution.

For 6 > 0 small enough, this will violate the minimality of w,.
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@ Show that the boundary of Sg is a graph over RY close to xo.

@ Assume at xp € [, we have |Vu.(xp)| = A < Ao. Then a
slight tilt of the extreme support plane H,,, say H, will
intersect a cap from Sg.

@ Slightly translate H parallel towards €2, to Hs, and in a slab
between H and Hs replace the boundary of Sg by an exact
solution.

For 6 > 0 small enough, this will violate the minimality of w,.

The conclusion is that |Vu,| = Ao everywhere on I, for the
minimal solution, and the free boundary is ct.
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Higher regularity of the free boundary

@ Strict ellipticity of u, and the regularity theory of MA
equations imply that u, is C* in the interior.
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Higher regularity of the free boundary

@ Strict ellipticity of u, and the regularity theory of MA
equations imply that u, is C* in the interior.

@ Using the C! regularity of the free boundary, and
CH1-boundary estimates of [J. Urbas, Calc. Var. 1998] for the
oblique boundary value problems, one gets a bound from
below on the 2nd fundamental form of the free boundary.
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Higher regularity of the free boundary

@ Strict ellipticity of u, and the regularity theory of MA
equations imply that u, is C* in the interior.

@ Using the C! regularity of the free boundary, and
CH1-boundary estimates of [J. Urbas, Calc. Var. 1998] for the
oblique boundary value problems, one gets a bound from
below on the 2nd fundamental form of the free boundary.

@ Hence, Blaschke inclusion (again) implies that the free
boundary rolls freely inside a ball of some large radius.

@ We can thus do the same construction with the free boundary
as our initial domain.

@ Extending in this way, we get that the gradient of extension
agrees with the gradient on u, on the free boundary, and we
get a solution across the free boundary. This makes, [, a
level surface of a smooth strictly convex solution, and hence

the smoothness of free boundary.
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Thank you!
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