K-surfaces with free boundaries

Hayk Aleksanyan

KTH Royal Institute of Technology

May 31, 2017

joint work with Aram Karakhanyan (University of Edinburgh)

イロト イポト イヨト イヨト

æ

Hayk Aleksanyan K-surfaces with free boundaries

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - 釣��

Definition

A smooth compact hypersurface in \mathbb{R}^{d+1} $(d \ge 2)$ having constant Gauss curvature K.

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ●

Definition

A smooth compact hypersurface in \mathbb{R}^{d+1} $(d \ge 2)$ having constant Gauss curvature K.

If NO boundary, then a K-surface (K > 0) bounds a convex body.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のくで

Definition

A smooth compact hypersurface in \mathbb{R}^{d+1} $(d \ge 2)$ having constant Gauss curvature K.

If NO boundary, then a K-surface (K > 0) bounds a convex body.

The central question

How does the boundary of a K-surface look like?

Definition

A smooth compact hypersurface in \mathbb{R}^{d+1} $(d \ge 2)$ having constant Gauss curvature K.

If NO boundary, then a K-surface (K > 0) bounds a convex body.

The central question

How does the boundary of a K-surface look like?

Precisely, given a disjoint collection $\Gamma = \{\Gamma_1, ..., \Gamma_m\}$ of codimension 2 submanifolds of \mathbb{R}^{d+1} , decide if there exists a *K*-surface of \mathbb{R}^{d+1} (in general immersed) having Γ as its boundary.

Definition

A smooth compact hypersurface in \mathbb{R}^{d+1} $(d \ge 2)$ having constant Gauss curvature K.

If NO boundary, then a K-surface (K > 0) bounds a convex body.

The central question

How does the boundary of a K-surface look like?

Precisely, given a disjoint collection $\Gamma = \{\Gamma_1, ..., \Gamma_m\}$ of codimension 2 submanifolds of \mathbb{R}^{d+1} , decide if there exists a *K*-surface of \mathbb{R}^{d+1} (in general immersed) having Γ as its boundary.

S.-T. Yau, Problem N26, of his list of open problems '90

What conditions should be imposed on a Jordan curve in \mathbb{R}^3 so that it can be a boundary of a disk with a given metric of positive curvature?

Hayk Aleksanyan K-surfaces with free boundaries

In R³ if the curve Γ bounds a K-surface, with K > 0, then Γ is *free of inflection points*.

イロト イポト イヨト イヨト

æ

In R³ if the curve Γ bounds a K-surface, with K > 0, then Γ is *free of inflection points*. In higher dimensions, the analogue is that the second fundamental form does not degenerate.

イロト イポト イヨト イヨト

æ

- In R³ if the curve Γ bounds a K-surface, with K > 0, then Γ is *free of inflection points*. In higher dimensions, the analogue is that the second fundamental form does not degenerate.
- (H. Rosenberg, '93) there are topological obstructions: the self-linking number of Γ must be 0.

イロト イタト イヨト イヨト

æ

- In R³ if the curve Γ bounds a K-surface, with K > 0, then Γ is *free of inflection points*. In higher dimensions, the analogue is that the second fundamental form does not degenerate.
- (H. Rosenberg, '93) there are topological obstructions: the self-linking number of Γ must be 0.
 NOT a sufficient condition, [H. Gluck and L. Pan, '98]

イロト イポト イヨト イヨト 一日

- In R³ if the curve Γ bounds a K-surface, with K > 0, then Γ is *free of inflection points*. In higher dimensions, the analogue is that the second fundamental form does not degenerate.
- (H. Rosenberg, '93) there are topological obstructions: the self-linking number of Γ must be 0.
 NOT a sufficient condition, [H. Gluck and L. Pan, '98]
- (M. Ghomi; JDG '17) the torsion of any closed curve in \mathbb{R}^3 bounding a simply connected locally convex surface vanishes at least 4 times

(日) (國) (王) (王) (王)

- In R³ if the curve Γ bounds a K-surface, with K > 0, then Γ is *free of inflection points*. In higher dimensions, the analogue is that the second fundamental form does not degenerate.
- (H. Rosenberg, '93) there are topological obstructions: the self-linking number of Γ must be 0.
 NOT a sufficient condition, [H. Gluck and L. Pan, '98]
- (M. Ghomi; JDG '17) the torsion of any closed curve in \mathbb{R}^3 bounding a simply connected locally convex surface vanishes at least 4 times
 - answers a question of H. Rosenberg from 1993
 - is a far reaching extension of the classical 4-vertex theorem, in particular extends the 4-vertex theorem of V.D. Sedykh from 1994

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → つくで

Hayk Aleksanyan K-surfaces with free boundaries

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● のへで

(L. Caffarelli, L. Nirenberg, J. Spruck; CPAM 1984)
 If Γ ⊂ ℝ³ is a smooth curve that projects one-to-one onto ∂Ω, for some Ω smooth, strictly convex planar domain, then Γ bounds a K-surface that is a graph over Ω provided K > 0 is small enough.

- (同) (三) (三)

- (L. Caffarelli, L. Nirenberg, J. Spruck; CPAM 1984)
 If Γ ⊂ ℝ³ is a smooth curve that projects one-to-one onto ∂Ω, for some Ω smooth, strictly convex planar domain, then Γ bounds a K-surface that is a graph over Ω provided K > 0 is small enough.
- (D. Hoffman, H. Rosenberg, J. Spruck; CPAM 1992) If C_1 , C_2 are two closed strictly convex curves in parallel planes, such that the projection of one is strictly inside the other. Then, for K > 0 small enough, there is a K-surface with boundary $\{C_1, C_2\}$.

イロト イヨト イヨト イヨト

æ

- (L. Caffarelli, L. Nirenberg, J. Spruck; CPAM 1984)
 If Γ ⊂ ℝ³ is a smooth curve that projects one-to-one onto ∂Ω, for some Ω smooth, strictly convex planar domain, then Γ bounds a K-surface that is a graph over Ω provided K > 0 is small enough.
- (D. Hoffman, H. Rosenberg, J. Spruck; CPAM 1992) If C_1 , C_2 are two closed strictly convex curves in parallel planes, such that the projection of one is strictly inside the other. Then, for K > 0 small enough, there is a K-surface with boundary $\{C_1, C_2\}$.
- (B. Guan, J. Spruck; Annals 1993) For each integer n > 0, there exists an embedded *K*-surface of genus *n*.

イロト イロト イヨト イヨト 二日

- (L. Caffarelli, L. Nirenberg, J. Spruck; CPAM 1984)
 If Γ ⊂ ℝ³ is a smooth curve that projects one-to-one onto ∂Ω, for some Ω smooth, strictly convex planar domain, then Γ bounds a K-surface that is a graph over Ω provided K > 0 is small enough.
- (D. Hoffman, H. Rosenberg, J. Spruck; CPAM 1992) If C_1 , C_2 are two closed strictly convex curves in parallel planes, such that the projection of one is strictly inside the other. Then, for K > 0 small enough, there is a K-surface with boundary $\{C_1, C_2\}$.
- (B. Guan, J. Spruck; Annals 1993) For each integer n > 0, there exists an embedded K-surface of genus n.
- Further remarkable results by [B. Guan, J. Spruck; JDG 2002, 2004, M. Ghomi; JDG 2001, and other authors...]

→ ★ 臣 → ★ 臣 → ○ Q Q Q

Hayk Aleksanyan K-surfaces with free boundaries

イロト イタト イヨト イヨト

3

Fix $\Gamma = {\Gamma_1, ..., \Gamma_m}$ a collection of disjoint (d - 1)-dimensional closed smooth embedded submanifolds of \mathbb{R}^{d+1} , and let T_0 be a smooth embedded submanifold in \mathbb{R}^{d+1} of codimension 1. Fix also an angle $\theta > 0$.

イロト イタト イヨト イヨト

æ

Fix $\Gamma = {\Gamma_1, ..., \Gamma_m}$ a collection of disjoint (d - 1)-dimensional closed smooth embedded submanifolds of \mathbb{R}^{d+1} , and let T_0 be a smooth embedded submanifold in \mathbb{R}^{d+1} of codimension 1. Fix also an angle $\theta > 0$.

K-surfaces with (Bernoulli) free boundary

What conditions should be imposed on Γ , T_0 , and θ in order to get a *K*-surface spanning Γ and hitting T_0 at an angle θ ?

Fix $\Gamma = {\Gamma_1, ..., \Gamma_m}$ a collection of disjoint (d - 1)-dimensional closed smooth embedded submanifolds of \mathbb{R}^{d+1} , and let T_0 be a smooth embedded submanifold in \mathbb{R}^{d+1} of codimension 1. Fix also an angle $\theta > 0$.

K-surfaces with (Bernoulli) free boundary

What conditions should be imposed on Γ , T_0 , and θ in order to get a *K*-surface spanning Γ and hitting T_0 at an angle θ ?

A model case:

Fix $\Gamma = {\Gamma_1, ..., \Gamma_m}$ a collection of disjoint (d - 1)-dimensional closed smooth embedded submanifolds of \mathbb{R}^{d+1} , and let T_0 be a smooth embedded submanifold in \mathbb{R}^{d+1} of codimension 1. Fix also an angle $\theta > 0$.

K-surfaces with (Bernoulli) free boundary

What conditions should be imposed on Γ , T_0 , and θ in order to get a *K*-surface spanning Γ and hitting T_0 at an angle θ ?

A model case:

• (The boundary) Take $\Gamma = \partial \Omega$ where $\Omega \subset \mathbb{R}^d \times \{h_0\}$ is strictly convex, and $h_0 > 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → つくで

Fix $\Gamma = {\Gamma_1, ..., \Gamma_m}$ a collection of disjoint (d - 1)-dimensional closed smooth embedded submanifolds of \mathbb{R}^{d+1} , and let T_0 be a smooth embedded submanifold in \mathbb{R}^{d+1} of codimension 1. Fix also an angle $\theta > 0$.

K-surfaces with (Bernoulli) free boundary

What conditions should be imposed on Γ , T_0 , and θ in order to get a *K*-surface spanning Γ and hitting T_0 at an angle θ ?

A model case:

- (The boundary) Take $\Gamma = \partial \Omega$ where $\Omega \subset \mathbb{R}^d \times \{h_0\}$ is strictly convex, and $h_0 > 0$.
- (The target manifold) $T_0 = \mathbb{R}^d \times \{0\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Fix $\Gamma = {\Gamma_1, ..., \Gamma_m}$ a collection of disjoint (d - 1)-dimensional closed smooth embedded submanifolds of \mathbb{R}^{d+1} , and let T_0 be a smooth embedded submanifold in \mathbb{R}^{d+1} of codimension 1. Fix also an angle $\theta > 0$.

K-surfaces with (Bernoulli) free boundary

What conditions should be imposed on Γ , T_0 , and θ in order to get a *K*-surface spanning Γ and hitting T_0 at an angle θ ?

A model case:

- (The boundary) Take $\Gamma = \partial \Omega$ where $\Omega \subset \mathbb{R}^d \times \{h_0\}$ is strictly convex, and $h_0 > 0$.
- (The target manifold) $T_0 = \mathbb{R}^d \times \{0\}$.
- (The hitting angle) $\theta = \arccos(1 + \lambda_0)^{-1/2}$, for some $\lambda_0 > 0$.

For a convex domain $\Omega \subset \mathbb{R}^d \times \{0\}$ and parameters $h_0, \lambda_0 > 0$, $K_0 \ge 0$, find a concave function $u : \mathbb{R}^d \times \{0\} \to \mathbb{R}_+$ such that

$$\begin{cases} \det D^2(-u) = K_0 \psi(|\nabla u|), & \text{in } \{u > 0\} \setminus \overline{\Omega}, \\ u = h_0, & \text{on } \partial\Omega, \\ |\nabla u| = \lambda_0, & \text{on } \Gamma_u \end{cases}$$

where $\psi > 0$ is a prescribed real-valued C^{∞} function, $\Gamma_u = \partial \{u > 0\} \setminus \overline{\Omega}.$

For a convex domain $\Omega \subset \mathbb{R}^d \times \{0\}$ and parameters $h_0, \lambda_0 > 0$, $K_0 \ge 0$, find a concave function $u : \mathbb{R}^d \times \{0\} \to \mathbb{R}_+$ such that

$$\begin{cases} \det D^2(-u) = \mathcal{K}_0 \psi(|\nabla u|), & \text{in } \{u > 0\} \setminus \overline{\Omega}, \\ u = h_0, & \text{on } \partial \Omega, \\ |\nabla u| = \lambda_0, & \text{on } \Gamma_u \end{cases}$$

where $\psi > 0$ is a prescribed real-valued C^{∞} function, $\Gamma_u = \partial \{u > 0\} \setminus \overline{\Omega}$. Geometry relevant choices:

• (the homogeneous equation) $K_0 = 0$,

イロト イポト イヨト イヨト 一日

For a convex domain $\Omega \subset \mathbb{R}^d \times \{0\}$ and parameters $h_0, \lambda_0 > 0$, $K_0 \ge 0$, find a concave function $u : \mathbb{R}^d \times \{0\} \to \mathbb{R}_+$ such that

$$\begin{cases} \det D^2(-u) = K_0 \psi(|\nabla u|), & \text{in } \{u > 0\} \setminus \overline{\Omega}, \\ u = h_0, & \text{on } \partial\Omega, \\ |\nabla u| = \lambda_0, & \text{on } \Gamma_u \end{cases}$$

where $\psi > 0$ is a prescribed real-valued C^{∞} function, $\Gamma_u = \partial \{u > 0\} \setminus \overline{\Omega}$. Geometry relevant choices:

- (the homogeneous equation) $K_0 = 0$,
- (constant curvature measure) $\psi\equiv 1$,

イロト イポト イヨト イヨト 一日

For a convex domain $\Omega \subset \mathbb{R}^d \times \{0\}$ and parameters $h_0, \lambda_0 > 0$, $K_0 \ge 0$, find a concave function $u : \mathbb{R}^d \times \{0\} \to \mathbb{R}_+$ such that

$$\begin{cases} \det D^2(-u) = K_0 \psi(|\nabla u|), & \text{in } \{u > 0\} \setminus \overline{\Omega}, \\ u = h_0, & \text{on } \partial\Omega, \\ |\nabla u| = \lambda_0, & \text{on } \Gamma_u \end{cases}$$

where $\psi > 0$ is a prescribed real-valued C^{∞} function, $\Gamma_u = \partial \{u > 0\} \setminus \overline{\Omega}$. Geometry relevant choices:

- (the homogeneous equation) $K_0 = 0$,
- (constant curvature measure) $\psi \equiv 1$,
- (constant Gauss curvature) $\psi(t) = (1 + t^2)^{(d+2)/2}$

For a convex domain $\Omega \subset \mathbb{R}^d \times \{0\}$ and parameters $h_0, \lambda_0 > 0$, $\mathcal{K}_0 \geq 0$, find a concave function $u : \mathbb{R}^d \times \{0\} \to \mathbb{R}_+$ such that

$$\begin{cases} \det D^2(-u) = K_0 \psi(|\nabla u|), & \text{in } \{u > 0\} \setminus \overline{\Omega}, \\ u = h_0, & \text{on } \partial\Omega, \\ |\nabla u| = \lambda_0, & \text{on } \Gamma_u \end{cases}$$

where $\psi > 0$ is a prescribed real-valued C^{∞} function, $\Gamma_u = \partial \{u > 0\} \setminus \overline{\Omega}$. Geometry relevant choices:

- (the homogeneous equation) $K_0 = 0$,
- (constant curvature measure) $\psi\equiv$ 1,
- (constant Gauss curvature) $\psi(t) = (1 + t^2)^{(d+2)/2}$

For *p*-Laplace equation, see [A. Henrot and H. Shahgholian; J. Reine und Angew. Math 2000], although methods and motivation are entirely different here.

Weak solutions (à la A.D. Aleksandrov)

Hayk Aleksanyan K-surfaces with free boundaries

Weak solutions (à la A.D. Aleksandrov)

The gradient mapping

Let $u: \Omega \to \mathbb{R}$ be convex, $x_0 \in \Omega$.

The gradient mapping

Let $u: \Omega \to \mathbb{R}$ be convex, $x_0 \in \Omega$. The set of slopes

$$\omega_{x_0}(u) = \{ p \in \mathbb{R}^d : u(x) \ge u(x_0) + p \cdot (x - x_0), \quad \forall x \in \Omega \}$$

is called the gradient mapping of u at x_0 .

The gradient mapping

Let $u: \Omega \to \mathbb{R}$ be convex, $x_0 \in \Omega$. The set of slopes

$$\omega_{x_0}(u) = \{ p \in \mathbb{R}^d : u(x) \ge u(x_0) + p \cdot (x - x_0), \quad \forall x \in \Omega \}$$

is called the gradient mapping of u at x_0 . For a set $E \subset \Omega$ set $\omega_E(u) = \bigcup_{x \in E} \omega_x(u)$.

2

The gradient mapping

Let $u: \Omega \to \mathbb{R}$ be convex, $x_0 \in \Omega$. The set of slopes

$$\omega_{x_0}(u) = \{ p \in \mathbb{R}^d : u(x) \ge u(x_0) + p \cdot (x - x_0), \quad \forall x \in \Omega \}$$

is called the gradient mapping of u at x_0 . For a set $E \subset \Omega$ set $\omega_E(u) = \bigcup_{x \in E} \omega_x(u)$.

The Monge-Ampère measure

We call a convex $u : E \to \mathbb{R}$ a solution to $\det D^2 u = K_0 \psi(|\nabla u|)$ on *E*, if for any Borel set $B \subset E$ one has $\int_{\omega_B(u)} \frac{d\xi}{\psi(|\xi|)} = K_0|B|$.

æ
The gradient mapping

Let $u: \Omega \to \mathbb{R}$ be convex, $x_0 \in \Omega$. The set of slopes

$$\omega_{x_0}(u) = \{ p \in \mathbb{R}^d : u(x) \ge u(x_0) + p \cdot (x - x_0), \quad \forall x \in \Omega \}$$

is called the gradient mapping of u at x_0 . For a set $E \subset \Omega$ set $\omega_E(u) = \bigcup_{x \in E} \omega_x(u)$.

The Monge-Ampère measure

We call a convex $u: E \to \mathbb{R}$ a solution to $\det D^2 u = K_0 \psi(|\nabla u|)$ on *E*, if for any Borel set $B \subset E$ one has $\int_{\omega_B(u)} \frac{d\xi}{\psi(|\xi|)} = K_0|B|$. The l.h.s. is called the Monge-Ampère measure.

æ

The gradient mapping

Let $u: \Omega \to \mathbb{R}$ be convex, $x_0 \in \Omega$. The set of slopes

$$\omega_{x_0}(u) = \{ p \in \mathbb{R}^d : u(x) \ge u(x_0) + p \cdot (x - x_0), \quad \forall x \in \Omega \}$$

is called the gradient mapping of u at x_0 . For a set $E \subset \Omega$ set $\omega_E(u) = \bigcup_{x \in E} \omega_x(u)$.

The Monge-Ampère measure

We call a convex $u: E \to \mathbb{R}$ a solution to $\det D^2 u = K_0 \psi(|\nabla u|)$ on E, if for any Borel set $B \subset E$ one has $\int_{\omega_B(u)} \frac{d\xi}{\psi(|\xi|)} = K_0|B|$. The l.h.s. is called the Monge-Ampère measure. The MA measure is weakly* continuous.

イロト イヨト イヨト イヨト

æ

Hayk Aleksanyan K-surfaces with free boundaries

 Fix any regular point x₀ ∈ Γ_u, i.e. Γ_u has a well-defined inner normal (call it ν).

イロト イポト イヨト イヨト

æ

- Fix any regular point x₀ ∈ Γ_u, i.e. Γ_u has a well-defined inner normal (call it ν).
- The condition $|\nabla u(x_0)| = \lambda_0$ means $\frac{\partial u}{\partial \nu}(x_0) = \lambda_0$, which always exists:

イロト イヨト イヨト イヨト

3

- Fix any regular point x₀ ∈ Γ_u, i.e. Γ_u has a well-defined inner normal (call it ν).
- The condition $|\nabla u(x_0)| = \lambda_0$ means $\frac{\partial u}{\partial \nu}(x_0) = \lambda_0$, which always exists: by concavity of u, for any $t_2 > t_1 > 0$ we get

$$u(x_0+t_1\nu) = u\left(\left(1-\frac{t_1}{t_2}\right)x_0+\frac{t_1}{t_2}(x_0+t_2\nu)\right) \geq \frac{t_1}{t_2}u(x_0+t_2\nu).$$

イロト イヨト イヨト イヨト

- Fix any regular point x₀ ∈ Γ_u, i.e. Γ_u has a well-defined inner normal (call it ν).
- The condition $|\nabla u(x_0)| = \lambda_0$ means $\frac{\partial u}{\partial \nu}(x_0) = \lambda_0$, which always exists: by concavity of u, for any $t_2 > t_1 > 0$ we get

$$u(x_0+t_1\nu)=u\left(\left(1-\frac{t_1}{t_2}\right)x_0+\frac{t_1}{t_2}(x_0+t_2\nu)\right)\geq \frac{t_1}{t_2}u(x_0+t_2\nu).$$

(Geometric reformulation) There is a unique support plane
 G in ℝ^d × {0} for Γ_u at x₀.

イロト イヨト イヨト イヨト

æ

- Fix any regular point x₀ ∈ Γ_u, i.e. Γ_u has a well-defined inner normal (call it ν).
- The condition $|\nabla u(x_0)| = \lambda_0$ means $\frac{\partial u}{\partial \nu}(x_0) = \lambda_0$, which always exists: by concavity of u, for any $t_2 > t_1 > 0$ we get

$$u(x_0+t_1\nu) = u\left(\left(1-\frac{t_1}{t_2}\right)x_0+\frac{t_1}{t_2}(x_0+t_2\nu)\right) \geq \frac{t_1}{t_2}u(x_0+t_2\nu).$$

- (Geometric reformulation) There is a unique support plane
 G in ℝ^d × {0} for Γ_u at x₀.
- Any support hyperplane H to the graph(u) at $(x_0, 0) \in \mathbb{R}^d \times \mathbb{R}$, must pass through G.

イロト イポト イヨト イヨト 一日

- Fix any regular point x₀ ∈ Γ_u, i.e. Γ_u has a well-defined inner normal (call it ν).
- The condition $|\nabla u(x_0)| = \lambda_0$ means $\frac{\partial u}{\partial \nu}(x_0) = \lambda_0$, which always exists: by concavity of u, for any $t_2 > t_1 > 0$ we get

$$u(x_0+t_1\nu) = u\left(\left(1-\frac{t_1}{t_2}\right)x_0+\frac{t_1}{t_2}(x_0+t_2\nu)\right) \geq \frac{t_1}{t_2}u(x_0+t_2\nu).$$

- (Geometric reformulation) There is a unique support plane
 G in ℝ^d × {0} for Γ_u at x₀.
- Any support hyperplane H to the graph(u) at $(x_0, 0) \in \mathbb{R}^d \times \mathbb{R}$, must pass through G.
- Hence, there is one free parameter, the slope of H.

イロト イポト イヨト イヨト 一日

- Fix any regular point x₀ ∈ Γ_u, i.e. Γ_u has a well-defined inner normal (call it ν).
- The condition $|\nabla u(x_0)| = \lambda_0$ means $\frac{\partial u}{\partial \nu}(x_0) = \lambda_0$, which always exists: by concavity of u, for any $t_2 > t_1 > 0$ we get

$$u(x_0+t_1\nu) = u\left(\left(1-\frac{t_1}{t_2}\right)x_0+\frac{t_1}{t_2}(x_0+t_2\nu)\right) \geq \frac{t_1}{t_2}u(x_0+t_2\nu).$$

- (Geometric reformulation) There is a unique support plane
 G in ℝ^d × {0} for Γ_u at x₀.
- Any support hyperplane H to the graph(u) at $(x_0, 0) \in \mathbb{R}^d \times \mathbb{R}$, must pass through G.
- Hence, there is one free parameter, the slope of *H*.
- The extreme H (i.e. the "most inclined on the graph") must have slope λ_0 .

The main results: homogeneous case

Theorem A ($K_0 = 0$, the homogeneous case)

Let $K_0 = 0$, and $\Omega \subset \mathbb{R}^d$ be bounded convex $C^{1,1}$ -regular domain. Then, there exists a unique weak solution u.

イロト イポト イヨト イヨト

The main results: homogeneous case

Theorem A ($K_0 = 0$, the homogeneous case)

Let $K_0 = 0$, and $\Omega \subset \mathbb{R}^d$ be bounded convex $C^{1,1}$ -regular domain. Then, there exists a unique weak solution u. Moreover

- the graph of *u* is a ruled surface,
- u is $C^{1,1}$ on $\{u > 0\} \setminus \overline{\Omega}$,
- the free boundary Γ_u is $C^{1,1}$,
- if in addition, Ω is strictly convex, then so is the free boundary.

イロト イタト イヨト イヨト

The main results: homogeneous case

Theorem A ($K_0 = 0$, the homogeneous case)

Let $K_0 = 0$, and $\Omega \subset \mathbb{R}^d$ be bounded convex $C^{1,1}$ -regular domain. Then, there exists a unique weak solution u. Moreover

- the graph of *u* is a ruled surface,
- u is $C^{1,1}$ on $\{u > 0\} \setminus \overline{\Omega}$,
- the free boundary Γ_u is $C^{1,1}$,
- if in addition, Ω is strictly convex, then so is the free boundary.

Example (truncated cone)

Take $\Omega = B(x_0, r)$ in \mathbb{R}^d $(d \ge 2)$. Fix $\lambda_0 > 0$ and $h_0 = 1$. Then

$$u(x) = 1 + \lambda_0 - rac{\lambda_0}{r}|x - x_0|, \quad r \leq |x - x_0| \leq r\left(1 + rac{1}{\lambda_0}\right)$$

is the solution, with free boundary $|x - x_0| = r(1 + 1/\lambda_0)$.

Let $K_0 > 0$, and $\Omega \subset \mathbb{R}^d$ be bounded strictly convex smooth domain. Let also $\psi : \mathbb{R}_+ \to (0, \infty)$ be non-decreasing and smooth.

Let $K_0 > 0$, and $\Omega \subset \mathbb{R}^d$ be bounded strictly convex smooth domain. Let also $\psi : \mathbb{R}_+ \to (0, \infty)$ be non-decreasing and smooth.

Then, there exists a small constant $K = K(\Omega, \psi, \lambda_0) > 0$, such that for any $K_0 \in (0, K)$ there exists a weak solution u, which is C^{∞} on $\{u > 0\} \setminus \overline{\Omega}$ and the free boundary Γ_u is C^{∞} as well.

Let $K_0 > 0$, and $\Omega \subset \mathbb{R}^d$ be bounded strictly convex smooth domain. Let also $\psi : \mathbb{R}_+ \to (0, \infty)$ be non-decreasing and smooth.

Then, there exists a **small** constant $K = K(\Omega, \psi, \lambda_0) > 0$, such that for any $K_0 \in (0, K)$ there exists a weak solution u, which is C^{∞} on $\{u > 0\} \setminus \overline{\Omega}$ and the free boundary Γ_u is C^{∞} as well.

On NON-existence

The smallness of K_0 cannot be eliminated entirely!

Let $K_0 > 0$, and $\Omega \subset \mathbb{R}^d$ be bounded strictly convex smooth domain. Let also $\psi : \mathbb{R}_+ \to (0, \infty)$ be non-decreasing and smooth.

Then, there exists a **small** constant $K = K(\Omega, \psi, \lambda_0) > 0$, such that for any $K_0 \in (0, K)$ there exists a weak solution u, which is C^{∞} on $\{u > 0\} \setminus \overline{\Omega}$ and the free boundary Γ_u is C^{∞} as well.

On NON-existence

The smallness of K_0 cannot be eliminated entirely!

Work out the case of **radial solutions** (when Ω is a ball) by hand.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト - ヨ - -

Some ideas of the proofs: the homogeneous case

A scematic view for the homogeneous case.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Convex polygonal domains

Let Ω ⊂ ℝ^d × {0} be a convex polygon, and let F₁,..., F_n be the facets of Ω̂ := Ω × {h₀}.

イロト イヨト イヨト イヨト

臣

Convex polygonal domains

- Let Ω ⊂ ℝ^d × {0} be a convex polygon, and let F₁,..., F_n be the facets of Ω̂ := Ω × {h₀}.
- For each 1 ≤ i ≤ n let H_i be the hyperplane in ℝ^{d+1} passing through F_i and having slope λ₀.
 Identify each H_i with the linear function.

Convex polygonal domains

- Let Ω ⊂ ℝ^d × {0} be a convex polygon, and let F₁, ..., F_n be the facets of Ω̂ := Ω × {h₀}.
- For each 1 ≤ i ≤ n let H_i be the hyperplane in ℝ^{d+1} passing through F_i and having slope λ₀.
 Identify each H_i with the linear function.
- Then $u(x) = \inf_{1 \le i \le n} H_i(x)$, $x \in \mathbb{R}^d$, solves the homogeneous problem.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト - ヨ - -

- Let Ω ⊂ ℝ^d × {0} be a convex polygon, and let F₁, ..., F_n be the facets of Ω̂ := Ω × {h₀}.
- For each 1 ≤ i ≤ n let H_i be the hyperplane in ℝ^{d+1} passing through F_i and having slope λ₀.
 Identify each H_i with the linear function.
- Then $u(x) = \inf_{1 \le i \le n} H_i(x)$, $x \in \mathbb{R}^d$, solves the homogeneous problem.
- The most delicate part is to show that there is no X ∈ ℝ^{d+1} in the strip 0 < x_{d+1} < h₀ where more than d planes meet, i.e. the graph of u has NO vertex (a geometric proof).

Approximation by polygons: existence

• Let Ω be bounded, convex and C^1 . For each $X_0 \in \widehat{\Omega}$ there is a support hyperplane H_{X_0} in \mathbb{R}^{d+1} through X_0 and having slope λ_0 .

イロン イロン イロン イロン

÷.

Approximation by polygons: existence

- Let Ω be bounded, convex and C^1 . For each $X_0 \in \widehat{\Omega}$ there is a support hyperplane H_{X_0} in \mathbb{R}^{d+1} through X_0 and having slope λ_0 .
- Define

$$h_*(x) = \inf_{X_0 \in \partial \widehat{\Omega}} H_{X_0}(x), \ x \in \mathbb{R}^d.$$

The infimum does not collapse due to the uniform bound on the slopes.

Approximation by polygons: existence

- Let Ω be bounded, convex and C^1 . For each $X_0 \in \widehat{\Omega}$ there is a support hyperplane H_{X_0} in \mathbb{R}^{d+1} through X_0 and having slope λ_0 .
- Define

$$h_*(x) = \inf_{X_0 \in \partial \widehat{\Omega}} H_{X_0}(x), \ x \in \mathbb{R}^d.$$

The infimum does not collapse due to the uniform bound on the slopes.

 Approximate Ω by polygonal domains, and for each polygon take the solution constructed above. Then, the limit will converge to h_{*} and will give a weak solution for the homogeneous problem (uses the weak* continuity of MA measure).

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト - ヨ - -

Let u be any weak solution, and assume X_0 is on the graph of u. Then, there is a line segment though X_0 joining the free boundary with $\mathbb{R}^d \times \{h_0\}$ and lying entirely on the graph of u.

イロト イボト イヨト イヨト 三日

Let u be any weak solution, and assume X_0 is on the graph of u. Then, there is a line segment though X_0 joining the free boundary with $\mathbb{R}^d \times \{h_0\}$ and lying entirely on the graph of u.

Proof.

• For a weak solution u fix X_0 in the interior of $\mathcal{M} := \operatorname{graph}(u)$.

Let u be any weak solution, and assume X_0 is on the graph of u. Then, there is a line segment though X_0 joining the free boundary with $\mathbb{R}^d \times \{h_0\}$ and lying entirely on the graph of u.

Proof.

- For a weak solution u fix X_0 in the interior of $\mathcal{M} := \operatorname{graph}(u)$.
- Fix a support hyperplane Π to M through X₀, and define X := Hull(Π ∩ M); we need to see that X intersects the h₀-and 0-level surfaces of u.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト - ヨ - -

Let u be any weak solution, and assume X_0 is on the graph of u. Then, there is a line segment though X_0 joining the free boundary with $\mathbb{R}^d \times \{h_0\}$ and lying entirely on the graph of u.

Proof.

- For a weak solution u fix X_0 in the interior of $\mathcal{M} := \operatorname{graph}(u)$.
- Fix a support hyperplane Π to M through X₀, and define X := Hull(Π ∩ M); we need to see that X intersects the h₀-and 0-level surfaces of u.
- Assume NOT, then we can squeeze a strictly convex surface "between" Π and *M* (using "smoothing of polytopes" after M. Ghomi), violating the condition det D²u = 0.

Let u be any weak solution, and assume X_0 is on the graph of u. Then, there is a line segment though X_0 joining the free boundary with $\mathbb{R}^d \times \{h_0\}$ and lying entirely on the graph of u.

Proof.

- For a weak solution u fix X_0 in the interior of $\mathcal{M} := \operatorname{graph}(u)$.
- Fix a support hyperplane Π to M through X₀, and define X := Hull(Π ∩ M); we need to see that X intersects the h₀-and 0-level surfaces of u.
- Assume NOT, then we can squeeze a strictly convex surface "between" Π and *M* (using "smoothing of polytopes" after M. Ghomi), violating the condition det D²u = 0.
- The case when $X_0 \in \partial \widehat{\Omega} \cup \Gamma_u$ follows by approximation. \Box

イロト イヨト イヨト イヨト ヨー シスペー

Let $\Omega_1 \subset \Omega_2$ be convex domains, and let a concave function u_i be a weak solutions for Ω_i , i = 1, 2. Define $\omega_i := \text{Hull}(\Gamma_i)$. Then

Let $\Omega_1 \subset \Omega_2$ be convex domains, and let a concave function u_i be a weak solutions for Ω_i , i = 1, 2. Define $\omega_i := \text{Hull}(\Gamma_i)$. Then

• if either of Γ_i is C^1 , then $\omega_1 \subset \omega_2$,

イロト イボト イヨト イヨト 三日

Let $\Omega_1 \subset \Omega_2$ be convex domains, and let a concave function u_i be a weak solutions for Ω_i , i = 1, 2. Define $\omega_i := \operatorname{Hull}(\Gamma_i)$. Then

- if either of Γ_i is C^1 , then $\omega_1 \subset \omega_2$,
- if either of u_i is C^1 in $\{u_i > 0\} \setminus \overline{\Omega}$, then $U_1 \leq U_2$, where U_i is the extension of u_i into Ω_i as identically h_0 .

イロト イボト イヨト イヨト 三日

Let $\Omega_1 \subset \Omega_2$ be convex domains, and let a concave function u_i be a weak solutions for Ω_i , i = 1, 2. Define $\omega_i := \text{Hull}(\Gamma_i)$. Then

- if either of Γ_i is C^1 , then $\omega_1 \subset \omega_2$,
- if either of u_i is C^1 in $\{u_i > 0\} \setminus \overline{\Omega}$, then $U_1 \leq U_2$, where U_i is the extension of u_i into Ω_i as identically h_0 .

Proof. Argue by contradiction, and use the existence of line segments on the graphs. \Box .

Regularity of a weak solution and free boundary

Proposition

Let Ω be bounded convex $C^{1,1}$ -regular domain, and let $h_*(x) = \inf_{X_0 \in \partial \widehat{\Omega}} H_{X_0}(x)$, $x \in \mathbb{R}^d$. Then, Γ_{h_*} is $C^{1,1}$ and h_* is $C^{1,1}$ in $\mathbb{R}^d \setminus \overline{\Omega}$.

イロン スロン スロン スロン

臣

Regularity of a weak solution and free boundary

Proposition

Let Ω be bounded convex $C^{1,1}$ -regular domain, and let $h_*(x) = \inf_{X_0 \in \partial \widehat{\Omega}} H_{X_0}(x)$, $x \in \mathbb{R}^d$. Then, Γ_{h_*} is $C^{1,1}$ and h_* is $C^{1,1}$ in $\mathbb{R}^d \setminus \overline{\Omega}$.

The proof: follow the shared line segment.

Hayk Aleksanyan K-surfaces with free boundaries

æ –

• If Ω is $C^{1,1}$, then h_* is $C^{1,1}$, and has $C^{1,1}$ free boundary.

イロト イヨト イヨト イヨト

1

• If Ω is $C^{1,1}$, then h_* is $C^{1,1}$, and has $C^{1,1}$ free boundary. Then, any weak solution can be compared with h_* , hence the uniqueness.

イロト イヨト イヨト イヨト

臣

- If Ω is $C^{1,1}$, then h_* is $C^{1,1}$, and has $C^{1,1}$ free boundary. Then, any weak solution can be compared with h_* , hence the uniqueness.
- Strict convexity of *h*_{*} follows by comparison with conical solutions.

A **quantitative version** of strict convexity follows from Blaschke inclusion principle and comparison of the solution with conical barriers (from above).

イロト スピト メヨト スヨト 二日

• (The class of super-solutions) concave functions $u \in \mathbb{W}_+(K_0, \lambda_0, \Omega)$ s.t. $u = h_0$ on $\partial \Omega$ and

 $\mathrm{det} D^2(-u) \geq \mathcal{K}_0 \psi(|\nabla u|) \text{ on } \{u > 0\} \backslash \overline{\Omega} \text{ and } |\nabla u| \leq \lambda_0 \text{ on } \Gamma_u.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• (The class of super-solutions) concave functions $u \in \mathbb{W}_+(K_0, \lambda_0, \Omega)$ s.t. $u = h_0$ on $\partial \Omega$ and

 $\mathrm{det} D^2(-u) \geq \mathcal{K}_0 \psi(|\nabla u|) \text{ on } \{u > 0\} \backslash \overline{\Omega} \text{ and } |\nabla u| \leq \lambda_0 \text{ on } \Gamma_u.$

Show that $\mathbb{W}_+ \neq \emptyset$ (by construction, an envelope of certain paraboloids).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

• (The class of super-solutions) concave functions $u \in \mathbb{W}_+(K_0, \lambda_0, \Omega)$ s.t. $u = h_0$ on $\partial \Omega$ and

 $\mathrm{det} D^2(-u) \geq \mathcal{K}_0 \psi(|\nabla u|) \text{ on } \{u > 0\} \backslash \overline{\Omega} \text{ and } |\nabla u| \leq \lambda_0 \text{ on } \Gamma_u.$

Show that $\mathbb{W}_+ \neq \emptyset$ (by construction, an envelope of certain paraboloids).

(Perron's method) Show that there is a minimal element in W₊, and that it solves the problem. The free boundary condition is the most delicate part (is being handled by a special type of extension, which we named *Blaschke* extension).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

• (The class of super-solutions) concave functions $u \in \mathbb{W}_+(K_0, \lambda_0, \Omega)$ s.t. $u = h_0$ on $\partial \Omega$ and

 ${\rm det} D^2(-u)\geq {\mathcal K}_0\psi(|\nabla u|) \text{ on } \{u>0\}\backslash\overline\Omega \text{ and } |\nabla u|\leq \lambda_0 \text{ on } \Gamma_u.$

Show that $\mathbb{W}_+ \neq \emptyset$ (by construction, an envelope of certain paraboloids).

- (Perron's method) Show that there is a minimal element in W₊, and that it solves the problem. The free boundary condition is the most delicate part (is being handled by a special type of extension, which we named *Blaschke* extension).
- (For smoothness of the free boundary) extend the solution beyond the free boundary, to reduce the matters to interior case.

Assumptions: Ω is bounded, strictly convex and C^2 , ψ is non-decreasing (need to adjust the free boundary condition) and smooth.

イロト イヨト イヨト イヨト

÷.

Assumptions: Ω is bounded, strictly convex and C^2 , ψ is non-decreasing (need to adjust the free boundary condition) and smooth.

• Let $\kappa_0 > 0$ be the smallest principal curvature of $\partial\Omega$. Then, Ω rolls freely inside a ball of radius $r_0 := 1/\kappa_0$ (W. Blaschke's rolling ball theorem (2d case), and [J. Rauch, JDG, 1974] for d > 2). (Intuition: A "more curved" fits inside the "less curved" one).

Assumptions: Ω is bounded, strictly convex and C^2 , ψ is non-decreasing (need to adjust the free boundary condition) and smooth.

- Let $\kappa_0 > 0$ be the smallest principal curvature of $\partial\Omega$. Then, Ω rolls freely inside a ball of radius $r_0 := 1/\kappa_0$ (W. Blaschke's rolling ball theorem (2d case), and [J. Rauch, JDG, 1974] for d > 2). (Intuition: A "more curved" fits inside the "less curved" one).
- If x₀ ∈ ∂Ω is fixed, and the ball B = B(z₀, r₀) touches Ω at x₀ and Ω ⊂ B, then the paraboloid P(x) = h₀ + αr₀² α|x z₀|² (with a properly chosen α > 0) satisfies

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト - ヨ - -

Assumptions: Ω is bounded, strictly convex and C^2 , ψ is non-decreasing (need to adjust the free boundary condition) and smooth.

- Let $\kappa_0 > 0$ be the smallest principal curvature of $\partial\Omega$. Then, Ω rolls freely inside a ball of radius $r_0 := 1/\kappa_0$ (W. Blaschke's rolling ball theorem (2d case), and [J. Rauch, JDG, 1974] for d > 2). (Intuition: A "more curved" fits inside the "less curved" one).
- If x₀ ∈ ∂Ω is fixed, and the ball B = B(z₀, r₀) touches Ω at x₀ and Ω ⊂ B, then the paraboloid P(x) = h₀ + αr₀² α|x z₀|² (with a properly chosen α > 0) satisfies
 - $P(x_0) = h_0$ and $P(x) \ge h_0$ on $\overline{\Omega}$,

Assumptions: Ω is bounded, strictly convex and C^2 , ψ is non-decreasing (need to adjust the free boundary condition) and smooth.

- Let $\kappa_0 > 0$ be the smallest principal curvature of $\partial\Omega$. Then, Ω rolls freely inside a ball of radius $r_0 := 1/\kappa_0$ (W. Blaschke's rolling ball theorem (2d case), and [J. Rauch, JDG, 1974] for d > 2). (Intuition: A "more curved" fits inside the "less curved" one).
- If x₀ ∈ ∂Ω is fixed, and the ball B = B(z₀, r₀) touches Ω at x₀ and Ω ⊂ B, then the paraboloid P(x) = h₀ + αr₀² α|x z₀|² (with a properly chosen α > 0) satisfies
 - $P(x_0) = h_0$ and $P(x) \ge h_0$ on $\overline{\Omega}$,
 - $\det D^2(-P) \ge K_0 \psi(|\nabla P|)$ on $\{P > 0\}$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト - ヨ - -

Assumptions: Ω is bounded, strictly convex and C^2 , ψ is non-decreasing (need to adjust the free boundary condition) and smooth.

- Let $\kappa_0 > 0$ be the smallest principal curvature of $\partial\Omega$. Then, Ω rolls freely inside a ball of radius $r_0 := 1/\kappa_0$ (W. Blaschke's rolling ball theorem (2d case), and [J. Rauch, JDG, 1974] for d > 2). (Intuition: A "more curved" fits inside the "less curved" one).
- If x₀ ∈ ∂Ω is fixed, and the ball B = B(z₀, r₀) touches Ω at x₀ and Ω ⊂ B, then the paraboloid P(x) = h₀ + αr₀² α|x z₀|² (with a properly chosen α > 0) satisfies
 - $P(x_0) = h_0$ and $P(x) \ge h_0$ on $\overline{\Omega}$,
 - $\det D^2(-P) \ge K_0 \psi(|\nabla P|)$ on $\{P > 0\}$.
 - $|\nabla P| \leq \lambda_0$ on $\partial \{P > 0\}$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト - ヨ - -

Assumptions: Ω is bounded, strictly convex and C^2 , ψ is non-decreasing (need to adjust the free boundary condition) and smooth.

- Let $\kappa_0 > 0$ be the smallest principal curvature of $\partial\Omega$. Then, Ω rolls freely inside a ball of radius $r_0 := 1/\kappa_0$ (W. Blaschke's rolling ball theorem (2d case), and [J. Rauch, JDG, 1974] for d > 2). (Intuition: A "more curved" fits inside the "less curved" one).
- If x₀ ∈ ∂Ω is fixed, and the ball B = B(z₀, r₀) touches Ω at x₀ and Ω ⊂ B, then the paraboloid P(x) = h₀ + αr₀² α|x z₀|² (with a properly chosen α > 0) satisfies
 - $P(x_0) = h_0$ and $P(x) \ge h_0$ on $\overline{\Omega}$,
 - $\det D^2(-P) \ge K_0 \psi(|\nabla P|)$ on $\{P > 0\}$.
 - $|\nabla P| \leq \lambda_0$ on $\partial \{P > 0\}$.
- Do this for a dense set of points, and take the infimum: gives an element of W₊.

Perron in action

• Any element of \mathbb{W}_+ is larger than the solution to the homogeneous equation. Hence,

$$u_*(x) := \inf_{w \in \mathbb{W}_+} w(x), \ x \in \mathbb{R}^d,$$

does not collapse.

イロト イヨト イヨト イヨト

÷.

• Any element of \mathbb{W}_+ is larger than the solution to the homogeneous equation. Hence,

$$u_*(x) := \inf_{w \in \mathbb{W}_+} w(x), \ x \in \mathbb{R}^d,$$

does not collapse.

Show an existence of a minimizing sequence, and hence u_{*} ∈ W₊ (plus strict concavity of u_{*}).

• Any element of \mathbb{W}_+ is larger than the solution to the homogeneous equation. Hence,

$$u_*(x) := \inf_{w \in \mathbb{W}_+} w(x), \ x \in \mathbb{R}^d,$$

does not collapse.

- Show an existence of a minimizing sequence, and hence $u_* \in \mathbb{W}_+$ (plus strict concavity of u_*).
- Solving the Dirichlet problem for affine boundary data, and using strong comparison principle, show u_{*} solves the equation in {u_{*} > 0} \ Ω.

イロン イロン イヨン イヨン 二日

• Any element of \mathbb{W}_+ is larger than the solution to the homogeneous equation. Hence,

$$u_*(x) := \inf_{w \in \mathbb{W}_+} w(x), \ x \in \mathbb{R}^d,$$

does not collapse.

- Show an existence of a minimizing sequence, and hence $u_* \in \mathbb{W}_+$ (plus strict concavity of u_*).
- Solving the Dirichlet problem for affine boundary data, and using strong comparison principle, show u_{*} solves the equation in {u_{*} > 0} \ Ω.
- Still need to show that |∇u_{*}| = λ₀ on the free boundary (we have only ≤ everywhere by construction).

Blaschke extension and the free boundary condition

Hayk Aleksanyan K-surfaces with free boundaries

・ロト・(四ト・(日下・(日下・(日下)

 Define a convex body S⁺_{*} bounded by the graph(u_{*}) if 0 < x_{d+1} < h₀, Ω × {h₀} if x_{d+1} = h₀, and when x_{d+1} < h₀ take the intersection of all extreme halfspaces at Γ_{u_{*}}.

- Define a convex body S_*^+ bounded by the graph (u_*) if $0 < x_{d+1} < h_0$, $\Omega \times \{h_0\}$ if $x_{d+1} = h_0$, and when $x_{d+1} < h_0$ take the intersection of all extreme halfspaces at Γ_{u_*} .
- For each $x \in \Gamma_{u_*}$, if H_x is an extreme supporting hyperplane to the graph, define H_x^{\perp} passing through $H_x \cap (\mathbb{R}^d \times \{0\})$ and the normal to H_x .

- Define a convex body S_*^+ bounded by the graph (u_*) if $0 < x_{d+1} < h_0$, $\Omega \times \{h_0\}$ if $x_{d+1} = h_0$, and when $x_{d+1} < h_0$ take the intersection of all extreme halfspaces at Γ_{u_*} .
- For each $x \in \Gamma_{u_*}$, if H_x is an extreme supporting hyperplane to the graph, define H_x^{\perp} passing through $H_x \cap (\mathbb{R}^d \times \{0\})$ and the normal to H_x .
- define S_x^- as the mirror reflection of S_x^+ with respect to H_x^{\perp} .

- Define a convex body S_*^+ bounded by the graph (u_*) if $0 < x_{d+1} < h_0$, $\Omega \times \{h_0\}$ if $x_{d+1} = h_0$, and when $x_{d+1} < h_0$ take the intersection of all extreme halfspaces at Γ_{u_*} .
- For each $x \in \Gamma_{u_*}$, if H_x is an extreme supporting hyperplane to the graph, define H_x^{\perp} passing through $H_x \cap (\mathbb{R}^d \times \{0\})$ and the normal to H_x .
- define S_x^- as the mirror reflection of S_x^+ with respect to H_x^{\perp} .
- Fix x₀ ∈ Γ_{u_{*}}, and take a dense sequence x_j ⊂ Γ_{u_{*}} near x₀.
 Define a nested sequence of convex bodies

$$\mathcal{S}^m = \mathcal{S}^+_* \cap \bigcap_{j=1}^m \mathcal{S}^-_{x_j},$$

and take a limit as $m \to \infty$. Call the limit convex body S_B the Blaschke reflection body.

イロト 不良 トイヨト 不良 トーロー

• Show that the boundary of S_B is a graph over \mathbb{R}^d close to x_0 .

イロト イヨト イヨト イヨト

1

- Show that the boundary of S_B is a graph over \mathbb{R}^d close to x_0 .
- Assume at x₀ ∈ Γ_{u_{*}} we have |∇u_{*}(x₀)| = λ < λ₀. Then a slight tilt of the extreme support plane H_{x0}, say H, will intersect a cap from S_B.

イロン スロン イヨン イヨン

臣

- Show that the boundary of S_B is a graph over \mathbb{R}^d close to x_0 .
- Assume at x₀ ∈ Γ_{u_{*}} we have |∇u_{*}(x₀)| = λ < λ₀. Then a slight tilt of the extreme support plane H_{x0}, say H, will intersect a cap from S_B.
- Slightly translate H parallel towards Ω , to H_{δ} , and in a slab between H and H_{δ} replace the boundary of S_B by an exact solution.

For $\delta > 0$ small enough, this will violate the minimality of u_* .

イロト イヨト イヨト イヨト

÷.

- Show that the boundary of S_B is a graph over \mathbb{R}^d close to x_0 .
- Assume at x₀ ∈ Γ_{u_{*}} we have |∇u_{*}(x₀)| = λ < λ₀. Then a slight tilt of the extreme support plane H_{x0}, say H, will intersect a cap from S_B.
- Slightly translate H parallel towards Ω , to H_{δ} , and in a slab between H and H_{δ} replace the boundary of S_B by an exact solution.

For $\delta > 0$ small enough, this will violate the minimality of u_* .

The conclusion is that $|\nabla u_*| = \lambda_0$ everywhere on Γ_{u_*} for the minimal solution, and the free boundary is C^1 .

Strict ellipticity of u_∗ and the regularity theory of MA equations imply that u_∗ is C[∞] in the interior.

イロト イヨト イヨト イヨト

2

- Strict ellipticity of u_∗ and the regularity theory of MA equations imply that u_∗ is C[∞] in the interior.
- Using the C¹ regularity of the free boundary, and C^{1,1}-boundary estimates of [J. Urbas, Calc. Var. 1998] for the oblique boundary value problems, one gets a bound from below on the 2nd fundamental form of the free boundary.

- Strict ellipticity of u_∗ and the regularity theory of MA equations imply that u_∗ is C[∞] in the interior.
- Using the C¹ regularity of the free boundary, and C^{1,1}-boundary estimates of [J. Urbas, Calc. Var. 1998] for the oblique boundary value problems, one gets a bound from below on the 2nd fundamental form of the free boundary.
- Hence, Blaschke inclusion (again) implies that the free boundary rolls freely inside a ball of some large radius.

- Strict ellipticity of u_∗ and the regularity theory of MA equations imply that u_∗ is C[∞] in the interior.
- Using the C¹ regularity of the free boundary, and C^{1,1}-boundary estimates of [J. Urbas, Calc. Var. 1998] for the oblique boundary value problems, one gets a bound from below on the 2nd fundamental form of the free boundary.
- Hence, Blaschke inclusion (again) implies that the free boundary rolls freely inside a ball of some large radius.
- We can thus do the same construction with the free boundary as our initial domain.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト - ヨ - -

- Strict ellipticity of u_* and the regularity theory of MA equations imply that u_* is C^{∞} in the interior.
- Using the C¹ regularity of the free boundary, and C^{1,1}-boundary estimates of [J. Urbas, Calc. Var. 1998] for the oblique boundary value problems, one gets a bound from below on the 2nd fundamental form of the free boundary.
- Hence, Blaschke inclusion (again) implies that the free boundary rolls freely inside a ball of some large radius.
- We can thus do the same construction with the free boundary as our initial domain.
- Extending in this way, we get that the gradient of extension agrees with the gradient on u_* on the free boundary, and we get a solution across the free boundary. This makes, Γ_{u_*} a level surface of a smooth strictly convex solution, and hence the smoothness of free boundary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(や)

Thank you!

Hayk Aleksanyan K-surfaces with free boundaries

<ロト <回 > < 三 > < 三 > ・ 三 -