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Abstract. We study the convergence of greedy algorithm with regard to renor-
malized trigonometric system. Necessary and sufficient conditions are found for
system’s normalization to guarantee almost everywhere convergence, and conver-
gence in Lp(T) for 1 < p < ∞ of the greedy algorithm. Also the non existence
is proved for normalization which guarantees convergence almost everywhere for
functions from L1(T), or uniform convergence for continuous functions.

1. Introduction

Let Φ = {ϕn}∞n=0 be a basis in Banach space X satisfying inf
n
||ϕn||X > 0. Then

each f ∈ X can be uniquely decomposed into series with respect to the system Φ,
which converges to f in the norm of X:

f =
∞∑
n=0

cn(f)ϕn,

where cn(f) are the coefficients of the expansion, and lim
n→∞

cn(f) = 0.

Denote by ΛN a set consisting of N indices and satisfying

min
k∈ΛN

|ck(f)| ≥ max
k/∈ΛN

|ck(f)|.

Then, the sum

GN(f) := GN(f,Φ) :=
∑
k∈ΛN

ck(f)ϕk

is called N -th greedy approximant of f with respect to the system Φ. This method
of approximation is called greedy algorithm.

A basis Φ is called a quasi-greedy basis, if there exists a constant C such that for
any f ∈ X

||GN(f,Φ)||X ≤ C||f ||X , N = 1, 2... .

P. Wojtaszczyk [23] proved that a basis Φ is quasi-greedy basis if and only if for

any f ∈ X one has

lim
N→∞

||f −GN(f,Φ)||X = 0.

Convergence of the greedy algorithm for special systems was studied by many au-
thors. T.W. Körner answering a question raised by Carleson and Coifman con-
structed in [15] a function from L2(T) and then in [16] a continuous function for
which the greedy algorithm by the trigonometric system diverges almost everywhere.
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In [22] V. Temlyakov proved the existence of a function from Lp, 1 ≤ p <
2, for which the greedy algorithm with respect to the trigonometric system does
not converge in measure, and also existence of a continuous function whose greedy
algorithm with respect to the trigonometric system does not converge in Lp, p > 2.
On the other hand S. Konyagin and V. Temlyakov [13] obtained sufficient conditions
for convergence of the greedy algorithm. Similar results concerning convergence
and divergence of the greedy algorithm by the Walsh system were obtained by G.
Amirkhanyan (see [3]).

M. Grigoryan and A. Sargsyan [5] constructed a continuous function for which
the greedy algorithm by the Faber-Schauder system does not converge in measure.

In [18] S. Kostyukovsky and A. Olevskii [18] constructed an orthonormal basis for
L2(0, 1) consisting of uniformly bounded functions, such that the greedy algorithm
with regard to that system converges almost everywhere for each function from
L2(0, 1), and in [19] M. Nielsen constructed an orthonormal system of uniformly
bounded functions which is a quasi-greedy basis in Lp(0, 1) for all 1 < p <∞.

Let Γ = {γn}∞n=0 be a decreasing sequence of positive numbers. For f ∈ X
we consider the decreasing rearrangement of absolute values of its non-vanishing
coefficients with the weight γn:

(1.1) |γσ(0)cσ(0)(f)| ≥ |γσ(1)cσ(1)(f)| ≥ ...|γσ(n)cσ(n)(f)| ≥ ...,

and define the greedy approximant with the weight Γ as follows:

(1.2) GN(f) := GN(f,Φ) := GN(f,Φ,Γ) :=
N∑
n=0

cσ(n)(f)ϕσ(n), N = 1, 2, ... .

We denote by D(f,Φ,Γ) the set of permutations σ satisfying (1.1). It is easy to
see that (1.2) coincides with the greedy approximant with regard to renormalized
system Φ, namely

(1.3) GN(f,Φ,Γ) = GN

(
f,

{
1

γn
ϕn

})
, N = 1, 2, ... .

Greedy algorithm with weight for general systems was considered in [14] and
[9]. Weights that guarantee convergence in L1 of the greedy algorithm with re-
spect to Haar system were characterized in [6]. In [21] convergence almost every-
where of similar algorithm was considered with regard to wavelet systems, and Haar
system. Characterization of weighted greedy algorithms which guarantee uniform
convergence for continuous functions and convergence almost everywhere for inte-
grable functions for the Haar system is obtained in [17] and [1], and for the classical
Franklin system in [2].

In [14] S. Konyagin and V. Temlyakov proved that for any normalized basis Φ in
Banach space X, for Γ = {2−n}∞n=0 and for each f ∈ X one has

lim
N→∞

||f −GN(f,Φ,Γ)||X = 0.

For the sequence Γ = {γn} we denote

(1.4) ω(Γ) = sup
m>n≥0

{
m− n :

γn
γm
≤ 2

}
.
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Example 1.1. It is clear that ω({αn}∞n=1) < ∞ for any positive α < 1, while
ω({n−1}∞n=1) =∞.

Remark 1.2. It is easy to see that the condition ω(Γ) < ∞ is equivalent to the
following one

sup
m>n

{
m− n :

γn
γm
≤ α

}
<∞, for each α > 1.

Remark 1.3. Using Remark 1.2 it is easy to see that under the condition ω(Γ) =∞,
for each α > 1, L and S there exist positive integers B > A satisfying

B > A > S, B − A > L and
γA
γB
≤ α.

Denote by T = {einx}n∈Z := {ψn}∞n=0 the trigonometric system in the following
enumeration: ψ0 = 1, ψ2n−1 = einx, ψ2n = e−inx, for n = 1, 2, ..., and let T = R/2πZ
be the unit torus. It is well know that in the mentioned order T is a basis in Lp(T)
for 1 < p <∞.

In case of the trigonometric system the rearrangement has the form σ : Z → Z,
i.e. for f ∈ L1(T) one considers the sequence

|c0(f)γ0|, |c1(f)γ1|, |c−1(f)γ2|, |c2(f)γ3|, |c−2(f)γ4|, ...,
where cn(f) are the Fourier coefficients of f , and σ rearranges it in decreasing order.

The present paper aims to study convergence by norm or a.e. for the greedy
algorithm with weight with respect to the trigonometric system. But at first we
prove the following

Theorem 1.4. Let Φ be a normalized basis in Banach space X and assume that the
sequence Γ satisfies ω(Γ) <∞. Then, for each f ∈ X and σ ∈ D(f,Φ,Γ),

lim
N→∞

||f −GN(f,Φ,Γ)||X = 0.

Since ω({2−n}∞n=1) < ∞ the aforementioned theorem of S. Konyagin and V.
Temlyakov follows from Theorem 1.4, and from Theorem 1.6 proved below follows
that in the class of all bases condition ω(Γ) <∞ is final.

For the trigonometric system we prove the following theorems.

Theorem 1.5. Let ω(Γ) < ∞ and 1 < p < ∞. Then for any f ∈ Lp(T), and
σ ∈ D(f,T,Γ) one has

1) lim
N→∞

||f −GN(f,T,Γ)||p = 0,

2) lim
N→∞

GN(f,T,Γ)(x) = f(x) a.e. x ∈ T.

Theorem 1.6. Let ω(Γ) =∞. Then

1) there exists a function f ∈
⋂

1≤p<2

Lp(T) for which the sequence {GN(f,T,Γ)}

diverges in measure for any σ ∈ D(f,T,Γ),

2) there exists a function f ∈ C(T) for which the sequence {GN(f,T,Γ)} di-

verges in || · ||p norm, for any 2 < p <∞ and each σ ∈ D(f,T,Γ).

For continuous functions the following holds true.

Theorem 1.7. Let the sequence Γ be fixed. Then
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1) if ω(Γ) = ∞ there exists f ∈ C(T), such that the sequence {GN(f,T,Γ)}
diverges unboundedly a.e. for each σ ∈ D(f,T,Γ),

2) if ω(Γ) < ∞ there exists f ∈ C(T), such that the sequence {GN(f,T,Γ)}
diverges at some point for each σ ∈ D(f,T,Γ).

In the next theorem we study convergence almost everywhere of the greedy al-
gorithm of functions from L1(T).

Theorem 1.8. For any sequence Γ there exists a function f ∈ L1(T), such that
the sequence {GN(f,T,Γ)} diverges unboundedly almost everywhere for any σ ∈
D(f,T,Γ).

2. Proofs of Theorems 1 – 4

In the proofs below we denote by C absolute constants, which can be different in
different formulas. For f ∈ L1(T) by spf denote the spectrum of the Fourier series
of f with regard to the trigonometric system, namely spf = {n ∈ Z : cn(f) 6= 0}.

Proof of Theorem 1. Let f ∈ X and a number ε > 0 be fixed. Denote

Tε(f) :=
∑

n: |cn(f)γn|>ε

cn(f)ϕn

and

N(ε) = min{N ∈ Z+ : |cn(f)γn| ≤ ε, ∀n ≥ N}.
Then

(2.1) {n ∈ Z+ : |cn(f)γn| > ε} ⊂ {0, 1, ..., N(ε)},
and

(2.2)
ε

γN(ε)

≤ |cN(ε)(f)| → 0, as ε→ 0.

Now we estimate the following difference

(2.3) ||SN(ε)(f)− Tε(f)||X =

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
n≤N(ε), |cn(f)γn|≤ε

cn(f)ϕn

∣∣∣∣∣∣
∣∣∣∣∣∣
X

≤ ε

N(ε)∑
n=0

1

γn
.

Denote H := ω(Γ) + 1, then from definition (1.4) and condition ω(Γ) <∞, we have

γn
γm

> 2, where m− n ≥ H.

Hence
N(ε)∑
n=0

1

γn
=

H−1∑
r=0

∑
n≡r(mod H)

1

γn
≤

(2.4)
H−1∑
r=0

(
1

2ir
+

1

2ir−1
+ ...+ 1

)
1

γN(ε)

≤ C
1

γN(ε)

,

where ir, r = 0, 1, ..., H − 1 are some indices. From (2.3), (2.4) and (2.2) follows,
that
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(2.5) lim
ε→0
||SN(ε)(f)− Tε(f)||X = 0.

If the set D(f,Φ,Γ) consists of a single element, then for each N ∈ N there exists
a number ε = ε(N) > 0 satisfyingGN(f) ≡ Tε(f) and hence lim

N→∞
||f−GN(f)||X = 0.

In case of #D(f,Φ,Γ) > 1 denote

(2.6) Ω0 = ∅, Ωn = {k ∈ Z+\(Ω1∪...∪Ωn−1) : |γkck(f)| = |γncn(f)|}, n = 1, 2, ...,

and if Ωn 6= ∅ set ωn = max Ωn. Now, if #Ωn > 1, by the same methods as in the
proof of (2.4) we get ∑

k∈Ωn

||ck(f)ϕk||X = |γωncωn(f)|
∑
k∈Ωn

1

γk
≤

(2.7) |γωncωn(f)|
ωn∑
k=0

1

γk
≤ C|cωn(f)|,

which together with (2.5) proves the theorem.
Theorem 1 is proved.

Proof of Theorem 2. As can be seen from the proof of Theorem 1.4 (see
(2.3) and (2.7)), as ω(Γ) < ∞ the difference between approximants GN(f,T,Γ),
N = 1, 2, ... of the function f ∈ L1(T) and some subsequence of the partial sums
its Fourier series tends to zero uniformly. Hence the first assertion of the theorem
follows from the basis property of the trigonometric system in Lp(T), 1 < p < ∞,
and the second one from the celebrated theorem of Carleson-Hunt (see [7]).

Theorem 2 is proved.

Let

DN(x) =
N∑

n=−N

einx, N = 0, 1, 2, ...

be the Dirichlet kernel for the trigonometric system, and

VN(x) =
1

N

2N∑
n=N+1

Dn(x), N = 1, 2, ...

be the de la Vallúe Poussin kernel. The following lemma holds true:

Lemma 2.1. For each N ∈ N and 1 ≤ p ≤ ∞ one has

||VN ||p ≤ CN1−1/p.

Proof. As is known ||VN ||1 ≤ C (see [8], p. 125), and also it is easy to see that
||VN ||2 ≤ CN1/2 and ||VN ||∞ ≤ CN for each N ≥ 1.

For f ∈ L∞(T) from the Hölder inequality we get

(2.8) ||f ||p ≤ ||f ||λq ||f ||1−λr ,
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where

1 ≤ p, q, r ≤ ∞, λ
q

+
1− λ
r

=
1

p
λ ∈ [0, 1].

Now, by using the mentioned estimates for Vallée-Poussin kernel and inequality
(2.8) for (p, q, r) = (p, 1, 2) in case of 1 < p < 2, and (p, q, r) = (p, 2,∞) in case of
2 < p <∞ we obtain the desired estimate.

Lemma is proved. �

Consider majorants of approximants (1.2) for the system T:

(2.9) G∗N(f, σ, x) := G∗N(f, x) := max
0≤n≤N

∣∣∣∣∣
n∑

k=−n

cσ(k)(f)eiσ(k)x

∣∣∣∣∣ , x ∈ T, N = 1, 2, ...,

and if P is a trigonometric polynomial denote

(2.10) G∗(P, σ, x) := G∗(P, x) := max
n≥0

∣∣∣∣∣
n∑

k=−n

cσ(k)(P )eiσ(k)x

∣∣∣∣∣ , x ∈ T.

We will need the following lemma from the remarkable work of T. Körner, (see
[16], Lemma 7), which we will paraphrase in a slightly different form.

Lemma 2.2. For each ε > 0 and any K > 1 there exist a trigonometric polynomial
P , and a measurable set E ⊂ T such that

(i) ||P ||∞ ≤ ε,

(ii) G∗(P, σ, x) > K, x /∈ E, for any permutation σ ∈ D(P,T, {1}n∈Z),

(iii) µ(E) ≤ ε,

(iv) modules of all non zero coefficients of P are different and if |cn(P )| >

|cm(P )| > 0 then |cn(P )| > 2|cm(P )|.

Proof. Assertions (i)− (iii) correspond to items (i)− (iii) of Lemma 7 from [16]. The
asserion (iv) follows from the proof of Lemma 14 of mentioned paper [16]. �

Proof of Theorem 3. For the proof of the theorem we use the method from [22].
1. According to Theorem 11, chapter 3, [8], there exist polynomials (polynomials

of Rudin-Shapiro)

RN(x) =
N∑
n=0

εne
inx, x ∈ T, εn = ±1, N = 1, 2, . . . ,

satisfying

(2.11) ||RN ||∞ ≤ 5N1/2, N = 1, 2, ...

Since the trigonometric system is orthonormal, if follows from (2.11) that

(2.12) ||RN ||1 ≥ CN1/2, N = 1, 2, ...,
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where C is an absolute positive constant. For s = ±1 denote

Λs := Λs(N) := {k : ck(RN) = s},

and let

DΛ :=
∑
k∈Λ

eikx.

Then

RN = DΛ1 −DΛ−1 .

From (2.11) and (2.12) follows existence of absolute constant c ∈ (0, 1) such that

µ{x ∈ T : |RN(x)| > cN1/2} > c, N = 1, 2, ...

Hence for one of the values s = ±1 the following inequality holds true:

(2.13) µ{x ∈ T : |DΛs(N)(x)| > c

2
N1/2} > c.

Consider the following trigonometric polynomial:

(2.14) gk(x) := 2−k/2

V2k(x) + s2−2kR2k(x)− 2−2k

−1∑
n=−2k

einx

 , x ∈ T,

where s = ±1 is chosen to satisfy (2.13). Observe that

(2.15) 2k/2gk = (1 + 2−2k)
∑

n∈Λs(2k)

einx +
∑

n/∈Λs(2k), |n|≤2k+1

αne
inx,

where 0 < αn ≤ 1− 2−2k for all n. Fix k and let p0 be an arbitrary positive integer.
According to Remark 1.3 choose positive integers B > A > p0 + 2k+1 with the
conditions

(2.16) B − A > 2k+2 and
γA
γB

<
1 + 2−2k

1− 2−2k

and denote fk(x) := ei(A+2k+1)xgk(x). Clearly spfk ⊂ [A,B]. Next, if we set γ−1 :=
γ0, then in accordance to (2.15), (2.16) and monotonicity of the sequence Γ we get

(2.17) min
n∈Λs(2k)+A+2k+1

|cn(fk)γ2n−1| > max
n/∈Λs(2k)+A+2k+1

|cn(fk)γ2n−1|.

Also note, that from Lemma 2.1 follows the inequality

(2.18) ||fk||p ≤ C2k(1/2−1/p).

Now choose increasing sequence of positive integers kn so that each coefficient in
polynomial gkn+1 will be smaller than the smallest coefficient of gkn . Then proceeding
from gkn construct fkn so that the smallest index of non vanishing coefficients of fkn+1

will be bigger than the biggest index of non zero coefficients of fkn . Set

f =
∞∑
n=1

fkn .
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It follows from (2.18) that f ∈ Lp(T) for any p < 2. Take any permutation
σ ∈ D(f,T,Γ). From the construction of f and (2.17) follows that if we choose

positive integers m
(n)
1 and m

(n)
2 appropriately then we will get

G
m

(n)
1

(f,T,Γ)−G
m

(n)
2

(f,T,Γ) = 2−kn/2(1 + 2−2kn)ei(An+2kn )xDΛs(2kn ).

From this, taking into account (2.13) follows that

µ{x ∈ T : |G
m

(n)
1

(f,T,Γ)(x)−G
m

(n)
2

(f,T,Γ)(x)| > 1

2
c} > c,

which means divergence in measure of the sequence {GN(f,T,Γ)}∞N=1.

2. Using the notations of the first part choose s = ±1 so to get |Λs| ≥ |Λ−s| and
set

(2.19) gk :=
2−k/2

k2
(R2k + s2−kD2k).

As in the first part according to Remark 1.3, for the given number p0 choose positive
integers B > A > p0 + 2k so that

(2.20) B − A > 2k+1 and
γA
γB

<
1 + 2−k

1− 2−k
,

and set fk(x) := ei(A+2k)xgk(x). Then spfk ⊂ [A,B], and index of the smallest
non vanishing coefficient of polynomial fk will be bigger from the number given in
advance. From (2.19), (2.20) and monotonicity of the sequence Γ we get

(2.21) hk := G|Λs(2k)|(fk,T,Γ) =
2−k/2

k2
(1 + 2−k)DΛs(2k).

Observe that ||hk||∞ ≥ |hk(0)| ≥ Ck−22k/2, hence from the inequality of S. Nikolskii
on trigonometric polynomials (see [20], p. 256) we get

(2.22) ||hk||p ≥ C
2−k/p

k2
||hk||∞ ≥ C

1

k2
2k(1/2−1/p).

Also note that by virtue of (2.11) we have

(2.23) ||fk||∞ ≤ C
1

k2
.

Now, the construction of desired functions from polynomials fk goes in analogy
with part 1. We choose an increasing sequence of positive integers kn so that each
coefficient in the polynomial gkn+1 will be bigger than the smallest coefficient in gkn .
Then, starting from gkn construct fkn so that the smallest of the indices of non
vanishing coefficients of fkn+1 will be bigger than the biggest of the indices of non
zero coefficients of fkn . Set

f =
∞∑
n=1

fkn .

From (2.23) we have f ∈ C(T). For any permutation σ ∈ D(f,T,Γ) from the

construction of f and (2.21) follows that there exist sequences m
(n)
1 and m

(n)
2 for

which
G
m

(n)
1

(f,T,Γ)−G
m

(n)
2

(f,T,Γ) = hkn .
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From the latter by virtute of (2.22) follows the assertion of the theorem.
Theorem 3 is proved completely.

Proof of Theorem 4. Assertion 1. We have ω(Γ) = ∞. It follows from

Lemma 2.2 that there exist trigonometric polynomials Pn and measurable sets En ⊂

T, n = 1, 2, ..., satisfying

a)
∞∑
n=1

||Pn||∞ <∞,

b) µ(En)→ 0,

c) G∗(Pn, σ, x) > n, x /∈ En, for any permutation σ ∈ D(Pn,T, {1}m∈Z),

d) if m, k ∈ spPn and |cm(Pn)| > |ck(Pn)| then |cm(Pn)| > 2|ck(Pn)|,

e) min
m∈spPn

|cm(Pn)| > max
m∈spPn+1

|cm(Pn+1)|.

According to Remark 1.3 choose positive integers Bn and An, n = 1, 2, ... so that

(2.24) An < Bn < An+1, Bn − An > 4|spPn| and
γAn

γBn

≤ 2, n = 1, 2, ...

Now set Qn(x) = exp[i(An + |spPn|)x]Pn(x), n = 1, 2, ... and observe that the

spectra of polynomials Qn are disjoint. We now prove that the function f :=
∞∑
n=1

Qn

satisfies conditions of the first item of the theorem. Continuity of the function f
follows from a). Next, for any permutation σ ∈ D(f,T,Γ) from condition d), (2.24)
and monotonicity Γ follows that

(2.25) σ |spQn∈ D(Qn,T, {1}m∈Z), n = 1, 2, ...

From e), (2.24), and monotonicity of Γ follows that

(2.26) min
k∈spQn

|ck(Qn)γ2k−1| > max
k∈spQn+1

|ck(Qn+1)γ2k−1|, n = 1, 2, ...

From (2.26), (2.25) and condition c) follows that there exists a sequence of indices
an satisfying

G∗an(f, σ, x) ≥ 1

2
G∗(Qn, x) ≥ 1

2
n, x /∈ En,

from which, taking into account b), follows that the sequence {GN(f,T,Γ)} diverges
almost everywhere, which proves the first part of the theorem.

Assertion 2. D.E. Menshov proved the existence of a continuous function for
which any subsequence of partial sums of its Fourier series diverges in at least one
point (see [4], p. 327). As was noted in the proof of Theorem 1.5 provided ω(Γ) <∞,
for any f ∈ L1(T) there is a subsequence of partial sums of its Fourier series so that
its difference with GN(f,T,Γ), N = 1, 2, ... tends to zero uniformly as N goes to
infinity. From the latter it follows that the function from the mentioned work of D.
Menshov satisfies the second assertion of the theorem.

Theorem 4 is proved completely.
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3. L1(T) Space. Proof of Theorem 5.

For a function f ∈ L1(T) by

SN(f, x) :=
∑
|k|≤N

ck(f)eikx, N = 1, 2, ...

we denote the N -th partial sum of its Fourier series. The proof of Theorem 1.8 is
carried out by method of Sh. V. Kheladze (see [10], [11]). The next lemma is proved
in [10].
Lemma 3.1. Let

Qn(x) =
n−1∑
j=0

1

n− j
cos(n+ j)x−

n∑
j=1

1

j
cos(2n+ j)x, n ∈ N.

Then

1) S2n−1(Qn, x) ≥ 1
2
lnn for each x ∈ [0, π/(6n)],

2) |Qn(x)| ≤ 2(π + 1) for each x ∈ T.

The main lemma of the current paragraph is the following:

Lemma 3.2. Provided ω(Γ) <∞, for any ε > 0, N ∈ N and K > 1 there exists a

real trigonometric polynomial P and a measurable set E ⊂ T such that

1) P (x) ≥ 0, x ∈ T,
2)
∫
T
P (x)dx = 2π,

3) cu(P ) = 0, 0 < |u| < N ,

4) G∗(P, σ, x) ≥ K, x ∈ E for any permutation σ ∈ D(P,T,Γ),

5) µ(E) ≥ 2π − ε.

Proof. Since ω(Γ) <∞, then for H := ω(Γ) + 1 we have γn > 2γm for any m,n ∈ N
provided m− n ≥ H. Hence for any positive integers a < b we get

(3.1) γa > 2lγb, where l =

[
b− a
H

]
.

Let Qn be a polynomial defined in Lemma 3.1. For k = 0, 1, 2, ... set

Qn,k :=
1

2(π + 1)
Qn

(
Hx− πk

6n

)
,

and

∆n,k :=

[
πk

6nH
;
π(k + 1)

6nH

]
.

From polynomials Qn,k we construct a required polynomial by the following way:

(3.2) P (x) := fn(x) :=
12nH−1∏
k=0

[1 + cos(λkx)Qn,k(x)] ,

where positive integers n and λk will be chosen later. Immediately note that by
virtue of the second item of Lemma 3.1 each polynomial of the form (3.2) satisfies



NONLINEAR APPROXIMATION BY RENORMALIZED TRIGONOMETRIC SYSTEM 11

condition 1) of the present lemma. On the other hand it is easy to see that if we
choose the sequence λk satisfying conditions

(3.3) λ0 > N + 220n2H2, λk > 3(λ0 + λ1 + ...+ λk−1), k = 1, 2, ...,

then the frequencies of harmonics, which appear after opening the brackets in the
product (3.2), will be different from zero, and conditions 2) and 3) of the current
lemma will hold true for any polynomial of the form (3.2). In the sequel we will
assume that for λk the condition (3.3) is satisfied.

At first we consider monomials in the product (3.2), namely polynomials Pn,k :=
cos(λkx)Qn,k(x). From the definition of Qn,k one can see that the spectrum of the
polynomial Pn,k is the set {±λk±(n+j)H, j = 0, 1, ..., n−1}∪{±λk±(2n+j)H, j =
1, 2, ..., n}, and for the corresponding coefficients we have

(3.4) |c±λk±(n+j)H(Pn,k)| =
1

8(π + 1)
· 1

n− j
, j = 0, 1, ..., n− 1

and

(3.5) |c±λk±(2n+j)H(Pn,k)| =
1

8(π + 1)
· 1

j
, j = 1, 2, ..., n.

Now take σ ∈ D(Pn,k,T,Γ). From (3.4), (3.5), (3.1), and monotonicity of the
sequence Γ follows that if u, v ∈ spPn,k and |u| > |v|, then σ(u) > σ(v). From the
latter, by virtue of condition 2) of Lemma 3.1 we get that

(3.6) G∗(Pn,k, σ, x) ≥ c(lnn)1/2, x ∈ En,k ∩∆n,k,

where

En,k := {x ∈ T : |cos(λkx)| ≥ (lnn)−1/2}.
Now, if we take λk divisible by 12nH, then a simple calculation shows that the sets
En,k for any k = 0, 1, 2, ... satisfy

(3.7) µ(En,k ∩∆n,k) > µ(∆n,k)

(
1− 2√

lnn

)
.

It is left to prove that by an appropriate choice of λk we can make the majorant
of fn close by its value to the majorants of the monomials on the sets En,k ∩∆n,k.

Observe that for each u ∈ spPn,k we have ||u| − λk| ≤ 3nH. After opening the
brackets in (3.2) consider polynomials other than monomials general form of which
is the following:

(3.8) Pk0,k1,...,km := cos(λk0x)cos(λk1x) · ... ·cos(λkmx)Qn,k0(x)Qn,k1(x) · ... ·Qn,km(x),

where 0 ≤ k0 < k1 < ... < km ≤ 12nH − 1. Clearly if u ∈ spPk0,k1,...,km , then
u = ±λk0 ± λk1 ± ... ± λkm + O(1), where O(1) is a quantity which by its absolute
value does not exceed 36H2n2, as the number of multipliers of Qn,k in the product
(3.8) does not exceed 12nH, and the biggest by absolute value element of a spectrum
of each polynomial Qn,k is 3nH. From (3.3) we get

(3.9)
1

2
λkm−1 ≤ ||u| − λkm| ≤ 2λkm−1 ,

i.e. each element of the spectrum Pk0,k1,...,km is on the distance of order λkm−1 from
λkm , and the smallest of these distances is greater than 0.5λ0.
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On the other hand it is clear that the smallest modulus of the coefficients of
polynomials of the form (3.8) is not less than a0 := [8n(π + 1)]−(12nH−1). Using
(3.1) we fix λ0 big enough to get a0γj > γj+0.5λ0−3nH for each j ∈ N. It is easy
to see that from the choice of the sequence λk and condition (3.9) follows that
σ |spPn,k

∈ D(Pn,k,T,Γ) and

(3.10) G∗(fn, σ, x) ≥ 1

2
G∗(Pn,k, σ, x), k = 0, 1, ..., 12nH − 1.

Denote En =
12nH−1⋃
k=0

(En,k ∩∆n,k). From (3.7) we have that

(3.11) µ(En) ≥ 2π

(
1− 2√

lnn

)
,

and from (3.10), and (3.6) we get

(3.12) G∗(fn, σ, x) ≥ c(lnn)1/2, x ∈ En.
From (3.11), and (3.12) follows that if n is sufficiently large, then the constructed

polynomial of the form (3.2) will satisfy the lemma.
Lemma is proved. �

Proof of Theorem 5. From Lemma 3.2 follows that there exist a sequence of real
trigonometric polynomials Pn, and a sequence of measurable sets En ⊂ T, n = 1, 2, ...
for which

1)
∞∑
n=1

||Pn||1 <∞,

2) G∗(Pn, σ, x) > n, x ∈ En for any permutation σ ∈ D(Pn,T,Γ),

3) µ(En)→ 2π,

4) (spPn ∩ spPm) \ {0} = ∅, m 6= n

5) min
k∈spPn

|ck(Pn)γ2|k|+1| > max
k∈spPn+1

|ck(Pn+1)γ2|k||.

Set f =
∞∑
n=1

Pn. From 1) we have that f ∈ L1(T). From 4), and 5) follows that

σ |spPn∈ D(Pn,T,Γ) for each permutation σ ∈ D(f,T,Γ), and that there exists a
sequence an for which G∗an(f, σ, x) > 1

2
G∗(Pn, σ, x). This, by virtue of 2), and 3)

implies divergence almost everywhere of the sequence of greedy approximants with
weight Γ of the function f .

Theorem 5 is proved.

The author express his gratitude to Professor A. Sahakyan under whose super-
vision the present work was done, and also to S. Gogyan for pointing out an easier
way of proving Lemma 3.2.
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