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1. Introduction

In their seminal work, D.H. Phong and E.M. Stein [5] study new classes of oscillatory
integral operators with singular weights, that in turn apply to the study of certain PDE
problems. Since this work appeared, there have been numerous results and developments
of the theory, with large variety of these type of operators. In this note we will be inter-
ested in two particular aspects of the result of Phong-Stein. Apart from [5], our interest
is partially motivated by applications of oscillatory integral operators in the analysis of
boundary value problems (see for example [1]-[3]), and recent developments in PDE prob-
lems involving oscillating boundaries (see for example [4]). In the first part of the note
we will introduce and study oscillatory integral operators with singular kernel and linear
phase, where integration is carried out on smooth hypersurfaces. Here we will aim at ob-
taining precise estimates with respect to the smoothness norm of the hypersurface. This is
done in order to obtain non trivial bounds when one allows the hypersurface to oscillate.
A type of an oscillating hypersurface considered here is technically smooth, however due
to its oscillatory nature one can not rely in a straightforward manner on partial integra-
tion techniques to bound the corresponding integral operator, since the derivatives of the
graph representing the surface blow-up. In the second part of the paper, we will study
a similar problem but with nonlinear phase function. The type of phase function stud-
ied in this case is in part motivated by the Helmholtz equation, and we will discuss one
particular application of our results regarding decay estimates for the eigenvalue problem
corresponding to the Helmholtz equation in R3.

Let us start by fixing the setup and notation. Throughout the text, by “ · ” we denote
the standard scalar product in Rn. For two quantities x and y we write x . y if there is an
absolute constant C for which x ≤ Cy. Likewise, if x and y depend on some parameter,
say δ, we may write x .δ y to indicate that the constant in the inequality depends on δ,
and is otherwise absolute.

For a real-valued function ψ ∈ C∞(Rn) satisfying ||Dαψ||L∞(Rn) .α 1 for any α ∈ Zn+,
let Γ be the following hypersurface

(1.1) Γ = {(y, ψ(y)) ∈ Rn+1 : y ∈ Rn}.
1
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For f ∈ L2(Rn), λ > 0, and (x, xn+1) ∈ Rn × R define

(1.2) Tλf(x, xn+1) =

∫
Γ

eiλx·yϕ0((x, xn+1), y)K(x− y, xn+1 − yn+1)f(y)dσ(y, yn+1),

where dσ is the induced surface measure on Γ, and

(A1) ϕ0 is real-valued and from the class C∞0 (Rn+1 × Rn),

(A2) K ∈ C∞(Rn+1 \ {0}) and for any z ∈ Rn+1 \ {0} and any α ∈ Zn+1
+ we have

|DαK(z)| .α
|z|m

|z|n+|α| ,

where 0 ≤ m < n. Here n ≥ 1, and we do not assume that m is necessarily an

integer.

Organization. In Section 2 we study Tλ as an operator from L2(Rn) to L2(Rn) and
prove decay estimates for its operator norm as λ → ∞. A special attention is paid to
obtaining precise bounds with respect to the smoothness norms of the surface Γ. We then
conclude the section by discussing the behavior of the operator Tλ under perturbations of
the fixed surface Γ. Next, in Section 3 we consider a maximal operator associated with
operators of the form (1.2) when the surface is allowed to oscillate. More precisely, for a
family of surfaces {Γε}0<ε≤1, we let T ελ be the operator defined by (1.2) for the surface
Γε, where the parameter 0 < ε ≤ 1 is meant to model an oscillatory behavior of the given
family of hypersurfaces. Then we analyse boundedness of the following maximal operator
T ∗λf(x, xn+1) = sup

0<ε≤1
|T ελf(x, xn+1)|, where (x, xn+1) ∈ Rn ×R. Finally, Section 4 studies

operators of type Tλ, however instead of a linear phase, there we have a “fractional”-type
nonlinearity, namely x ·y in the exponential is replaced by |x−y|γ with γ ≥ 1. This change
requires a radically different approach. We discuss in subsection 4.2.1 how the case γ = 1
applies to Helmholtz equation. At the end of Section 4 we show that the obtained upper
bounds of some of the operators considered in the article are sharp.

2. The main estimate for Tλ

Throughout this section we will be working with operators defined on L2(Rn) and with
values in L2(Rn). Thus if T is an operator of this type, by ||T || we denote its operator
norm. Also, when estimating a certain quantity, we will be only concerned with constants
that depend on the surface, i.e. the function ψ of (1.1). The following is our main estimate
for the operator Tλ defined by (1.2).

Theorem 2.1. For any 1 ≤ m < n, and any xn+1 ∈ R we have

(2.1) ||Tλ|| . λ−
m
2

n
n+1 [1 + ||∇ψ||L∞(Rn)]× [1 + ||ψ||L∞(Rn)],

where the constant depends on the cut-off function ϕ0, and is independent of xn+1 and ψ.

We start by decomposing Tλ as follows. Fix a parameter 0 ≤ β ≤ 1 that will be
specified below, and a smooth function ϕ : Rn → [0, 1] such that ϕ(y) = 0 for |y| ≤ 1 and
ϕ(y) = 1 for |y| ≥ 2. We then have the following decomposition

Tλf = Aλf +Bλf,
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where Bλ in terms of volume integral is

Bλf(x, xn+1) =

∫
Rn
eiλx·yϕ0((x, xn+1), y)K(x− y, xn+1 − ψ(y))×

ϕ((x− y)λβ)(1 + |∇ψ(y)|2)1/2f(y)dy.

Lemma 2.2. For any λ ≥ 1, any m > 0, and any 0 ≤ β ≤ 1 one has

||Aλ|| . [1 + ||∇ψ||L∞(Rn)]λ
−mβ.

Proof. Rewriting Aλ in terms of volume integral we get

Aλf(x, xn+1) =

∫
Rn
eiλx·yϕ0((x, xn+1), y)K(x− y, xn+1 − ψ(y))×

[1− ϕ((x− y)λβ)](1 + |∇ψ(y)|2)1/2f(y)dy.

Now, using assumption (A2) for kernel K, along with the definition of ϕ we obtain

(2.2) |Aλf(x, xn+1)| . [1 + ||∇ψ||L∞(Rn)]Iλ(x),

where the constant depends on the supremum norm of ϕ0, and the appropriate constant
involved in (A2), and we have

Iλ(x) :=

∫
|x−y|≤2λ−β

|f(y)|
|x− y|n−m

dy ≤

∑
2−k≤4λ−β

∫
2−k−1≤|x−y|≤2−k

|f(y)|
|x− y|n−m

dy .

∑
2−k≤4λ−β

2−mk
1

2−kn

∫
2−k−1≤|x−y|≤2−k

|f(y)|dy .

Mf(x)
∑

2−k≤4λ−β

2−mk .Mf(x)λ−βm,

where M is the Hardy-Littlewood maximal function. Since M has strong (2, 2) type, the
last inequality combined with (2.2) completes the proof of the Lemma. �

To study Bλf we rewrite it in the form

(2.3) Bλf(x, xn+1) =

∫
Rn
kλ
(
(x, xn+1), y

)
K
(
x− y, xn+1 − ψ(y)

)
g(y)dy,

where we have set

kλ
(
(x, xn+1), y

)
:= eiλx·yϕ0

(
(x, xn+1), y

)
ϕ((x− y)λβ),

and

(2.4) g(y) := f(y)(1 + |∇ψ(y)|2)1/2, y ∈ Rn.

For the estimate of Bλ we start with a lemma, where the constants are allowed to depend
on the norm of derivatives of the function ψ representing the surface. This dependence
will be revised later on.



4 HAYK ALEKSANYAN, HENRIK SHAHGHOLIAN, AND PER SJÖLIN

Lemma 2.3. For (x, xn+1) ∈ Rn × R set

(B̃λf)(x, xn+1) =

∫
Rn
kλ
(
(x, xn+1), y

)
K
(
x− y, xn+1 − ψ(y)

)
f(y)dy.

Then

||B̃λ|| ≤ Cψλn(β−1/2)−mβ,

where 0 ≤ m < n, Cψ is independent of λ, and xn, and depends on finite number of
derivatives of ψ.

Proof. The proof follows closely the lines of Proposition 1 on p. 134 of [5]. Observe that

B̃λ has kernel

Lλ(x, y) = eiλx·yϕ0((x, xn+1), y)ϕ((x− y)λβ)K(x− y, xn+1 − ψ(y)),

and the conjugate operator B̃∗λ has kernel Lλ(y, x). It follows that B̃λB̃
∗
λ has kernel

Mλ(x, y) =

∫
Rn
Lλ(x, z)Lλ(y, z)dz =∫

Rn
eiλ(x−y)·zϕ0((x, xn+1), z)ϕ0((y, xn+1), z)ϕ((x− z)λβ)ϕ((y − z)λβ)×

K(x− z, xn+1 − ψ(z))K(y − z, xn+1 − ψ(z))dz.

Since we will obtain uniform estimates in xn+1 the dependence of the kernels on xn+1 is
dropped from the notation. Using the estimate (A2) for K, for any α ∈ Zn+ we have

|(Dα
zK)(x− z, xn+1 − ψ(z))| .ψ

1

|x− z|n−m+|α| .

In view of the last inequality, integrating by parts N ≥ 0 times in the kernel M we get

(2.5) |Mλ(x, y)| .ψ (λ|x− y|)−N
∑

0≤k+l≤N
Ik,l(x, y),

where

Ik,l(x, y) :=

∫
λ−β≤|x−z|≤C
λ−β≤|y−z|≤C

|x− z|−n+m−k|y − z|−n+m−ldz.

Assuming n−2m+N > 0 and using k+ l ≤ N , it is easy to see that each Ik,l is uniformly
bounded above by

∫
λ−β≤|z|≤C

|z|−2n+2m−Ndz .

1∫
λ−β

rn−1

r2n−2m+N
dr . λβ(n−2m+N).

From here, getting back to (2.5) we obtain

(2.6) |M(x, y)| .ψ
λβ(n−2m)

(λ1−β|x− y|)N
,

where N ≥ 0 is an integer satisfying n − 2m + N > 0. By a convexity argument as in
Proposition 1 of [5] p.134, we can eliminate the condition on N being an integer, thus
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getting (2.6) with non integer values of N . We then choose N1 < n and N2 > n in (2.6),
which is allowable since m < n. It follows that∫

Rn
|M(x, y)|dy .ψ

∫
λ1−β |z|≤1

λβ(n−2m)

(λ1−β|z|)N1
dz +

∫
λ1−β |z|>1

λβ(n−2m)

(λ1−β|z|)N2
dz .

[
substituting u = λ1−βz

]
.ψ λ

n(2β−1)−2mβ,

uniformly in x. By symmetry, the same estimate holds for integration with respect to x
and fixed y. Using the obtained mixed L1-norm estimate of the kernel M we can easily
bound the L2 7→ L2 norm of the corresponding operator, thus obtaining

||B̃λ|| .ψ λn(β−1/2)−mβ,

where we choose 0 ≤ β ≤ 1 satisfying β ≤ n
2(n−m) to get a bound for the norm of B̃λ. The

proof is complete. �

We are now ready to prove the main estimate on Bλ defined by (2.3).

Proposition 2.4. Assume 1 ≤ m < n, and for fixed (x, xn+1) ∈ Rn×R let B
(0)
λ be defined

as follows

B
(0)
λ g(x, xn+1) =

∫
Rn
eiλx·yϕ0((x, xn+1), y)ϕ((x− y)λβ)K(x− y, xn+1 − ψ(y))g(y)dy.

Then

||B(0)
λ || . λ

n(β−1/2)−mβ + ||ψ||L∞λn(β−1/2)−mβ+β.

Remark 2.5. Observe that if Bλ is the operator defined by (2.3), then by (2.3) and (2.4)

we have Bλf = B
(0)
λ g with g(y) = f(y)(1 + |∇ψ(y)|2)1/2. Hence Proposition 2.4 implies

the following bound

(2.7) ||Bλ|| . [1 + ||∇ψ||L∞(Rn)]×
(
λn(β−1/2)−mβ + ||ψ||L∞(Rn)λ

n(β−1/2)−mβ+β
)
.

Proof of Proposition 2.4. We have

K
(
x− y, xn+1 − ψ(y)

)
−K(x− y, xn+1) =

xn+1−ψ(y)∫
xn+1

∂n+1K(x− y, t)dt.

Recall that kλ((x, xn+1), y) = eiλx·yϕ0((x, xn+1), y)ϕ((x− y)λβ), we thus get

B
(0)
λ g(x, xn+1) =

∫
Rn
kλ
(
(x, xn+1), y

)
K
(
x− y, xn+1 − ψ(y)

)
g(y)dy =∫

Rn
kλ
(
(x, xn+1), y

)
K
(
x− y, xn+1

)
g(y)dy+

∫
Rn
kλ
(
(x, xn+1), y

) xn+1−ψ(y)∫
xn+1

∂n+1K(x− y, t)dt

 g(y)dy =:

B
(1)
λ g(x, xn+1) +B

(2)
λ g(x, xn+1).

It follows by Lemma 2.3 that

(2.8) ||B(1)
λ || . λ

n(β−1/2)−mβ.
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For B
(2)
λ we have the following decomposition

(2.9) B
(2)
λ g(x, xn+1) = −

∫∫
E1

kλ((x, xn+1), y)∂n+1K(x− y, t)g(y)dydt+

∫∫
E2

kλ((x, xn+1), y)∂n+1K(x− y, t)g(y)dydt,

where for M = ||ψ||L∞(Rn) we let

E1 := {(y, t) : ψ(y) > 0, xn+1 − ψ(y) < t < xn+1} =

{(y, t) : xn+1 −M < t < xn+1, ψ(y) > xn+1 − t}
and

E2 := {(y, t) : ψ(y) < 0, xn+1 < t < xn+1 + ψ(y)} =

{(y, t) : xn+1 < t < xn+1 +M, ψ(y) < xn+1 − t}.
From here we obtain

(2.10) B
(2)
λ g(x, xn+1) =

−
xn+1∫

xn+1−M

∫
Rn

kλ((x, xn+1), y)∂n+1K(x− y, t)I{y: ψ(y)>xn+1−t}g(y)dydt+

xn+1+M∫
xn+1

∫
Rn

kλ((x, xn+1), y)∂n+1K(x− y, t)I{y: ψ(y)<xn+1−t}g(y)dydt,

where I stands for the characteristic function. Denote g1,t(y) := I{y: ψ(y)>xn+1−t}g(y),

g2,t(y) := I{y: ψ(y)<xn+1−t}g(y), and for h ∈ L2(Rn) set

Fth(x, xn+1) :=

∫
Rn
kλ((x, xn+1), y)∂n+1K(x− y, t)h(y)dy, (x, xn+1) ∈ Rn+1.

With this notation we have

B
(2)
λ g(x, xn+1) = −

xn+1∫
xn+1−M

Ftg1,t(x, xn+1)dt+

xn+1+M∫
xn+1

Ftg2,t(x, xn+1)dt.

Observe that Lemma 2.3 implies ||Ft|| . λn(β−1/2)−mβ+β, with constants independent of
ψ, hence using Minkowski’s inequality for integrals we obtain

(2.11) ||B(2)
λ || .Mλn(β−1/2)−mβ+β.

Finally, combining (2.8) and (2.11) we get

||B(0)
λ || . λ

n(β−1/2)−mβ + ||ψ||L∞(Rn)λ
n(β−1/2)−mβ+β,

completing the proof the Proposition. �

Proof of Theorem 2.1. Getting back to the original operator Tλ defined by (1.2), in
view of Lemma 2.2 and Proposition 2.4 we have

||Tλ|| ≤ ||Aλ||+ ||Bλ|| .

[1 + ||∇ψ||L∞(Rn)]× [λ−mβ + λn(β−1/2)−mβ + ||ψ||L∞(Rn)λ
n(β−1/2)−mβ+β],
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which, if optimized in β implies

(2.12) ||Tλ|| . λ−
m
2

n
n+1 [1 + ||∇ψ||L∞(Rn)]× [1 + ||ψ||L∞(Rn)].

The last estimate completes the proof of Theorem. �

2.1. Perturbing the surface. Here we discuss the case when the operator Tλ is defined
on a perturbation of some fixed surface Γ0. Assume we have

Γ0 = {(y, ψ0(y)) : y ∈ Rn},

where ψ0 ∈ C∞(Rn) is real-valued and has all its derivatives bounded on Rn. Now,
for ε > 0 consider a family of smooth and real-valued functions ψε(y), along with the
hypersurfaces

Γε = {(y, ψ0(y) + ψε(y)) : y ∈ Rn},
that is we perturb the fixed surface Γ0 by ψε. Here as well, the assumption is that each
ψε has bounded derivatives of all orders on Rn, however we do not impose any uniform
bound with respect to ε, neither we assume any structural restriction on ψε.

For ε > 0 let the operator T ελ be defined as in (1.2) where integration is over Γε. Then
by Theorem 2.1 we get

||T ελ || .ψ0 λ
−m

2
n
n+1 [1 + ||∇ψε||L∞(Rn)]× [1 + ||ψε||L∞(Rn)],

uniformly in ε > 0 and λ > 0. The point of the last estimate is that even with a rough
surface, in a sense that there is no uniform control over the derivatives of the graph
representing the surface, we may still control the norms of the corresponding operators.

3. Maximal operator for oscillating surfaces

The aim of this section is to illustrate that for small oscillations of the surface, we may
as well control the maximal operator associated with the oscillations. For ε > 0 set

(3.1) Γε = {(y, εγψ(y/ε)) : y ∈ Rn},

where ψ ∈ C∞(Rn) is bounded and has bounded derivatives of all orders, and γ > 0 is
a fixed parameter which will be specified below in Theorem 3.1. As in (1.2), for λ > 0,
ε > 0 and (x, xn+1) ∈ Rn × R define

(3.2) T ελf(x, xn+1) =

∫
Γε

eiλx·yϕ0

(
(x, xn+1), y

)
K(x− y, xn+1 − yn+1)f(y)dσε(y, yn+1),

where f ∈ L2(Rn) and ϕ0 and K are defined as in Section 1. Consider the following
maximal operator

(3.3) T ∗λf(x, xn+1) := sup
0<ε≤1

|T ελf(x, xn+1)|, (x, xn+1) ∈ Rn × R.

Similar types of maximal operators related to integral operators for a parameterized family
of smooth surfaces had been considered in [6]. More precisely [6] deals with maximal op-
erators corresponding to Lp-averaging operators defined on a family of surfaces converging
to a smooth immersed surface with Gaussian curvature nowhere vanishing of infinite order.
While the idea of taking the pointwise upper bound with respect to the family of hyper-
surfaces is the same as in [6], the problem and the analysis discussed here are completely
different from [6]. Our main result concerning (3.3) is the following L2(Rn) 7→ L2(Rn)
bound.

Theorem 3.1. For γ > 3/2 and 1 ≤ m < n, we have ||T ∗λ || . λ
−m

2
n
n+2 .
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As for Tλ defined by (1.2), start by fixing a smooth function ϕ : Rn → [0, 1] such that
ϕ(y) = 0 for |y| ≤ 1 and ϕ(y) = 1 for |y| ≥ 2. Fix also a parameter 0 < β < 1 that will be
specified in the proof of Theorem 3.1 below. We have the following decomposition

T ελf = Aελf +Bε
λf,

where

Aελf(x, xn+1) =

∫
Γε

eiλx·yϕ0((x, xn+1), y)K(x−y, xn+1−yn+1)[1−ϕ((x−y)λβ)]f(y)dσε(y).

Clearly we get

T ∗λf(x, xn+1) ≤ A∗λf(x, xn+1) +B∗λf(x, xn+1),

where the maximal operators on the right-hand side are defined in analogy with (3.3).

Lemma 3.2. For any λ ≥ 1, any γ ≥ 1, and any β ≥ 0 one has

||A∗λ|| . [1 + ||∇ψ||L∞(Rn)]λ
−mβ.

Proof. We use the fact that γ ≥ 1 and repeat the proof of Lemma 2.2. �

Proof of Theorem 3.1. For fixed ε > 0 and (x, xn+1) ∈ Rn × R we have

(3.4) Bε
λf(x, xn+1) = B0

λf(x, xn+1) +

ε∫
0

d

dτ
Bτ
λf(x, xn+1)dτ,

where B0
λf(x, xn+1) = lim

ε→0
Bε
λf(x, xn+1). Since γ > 1 this limit exists, as well as the

differential with respect to τ in (3.4). By (3.4) we have

|B∗λf | ≤ |B0
λf |+

1∫
0

∣∣∣∣ ddεBτ
λf

∣∣∣∣ dε,
from which, using Minkowski’s inequality for integrals we get

(3.5) ||B∗λ|| . ||B0
λ||+

1∫
0

∣∣∣∣∣∣∣∣ ddεBε
λ

∣∣∣∣∣∣∣∣ dε.
Rewriting Bε

λ as volume integral gives

Bε
λf(x, xn+1) =

∫
Rn
eiλx·yϕ0((x, xn+1), y)K(x− y, xn+1 − εγψ(y/ε))×

ϕ((x− y)λβ)(1 + |εγ−1(∇ψ)(y/ε)|2)1/2f(y)dy,

from where we obtain

(3.6) B0
λf(x, xn+1) =

∫
Rn
eiλx·yϕ0((x, xn+1), y)K(x− y, xn+1)ϕ((x− y)λβ)f(y)dy.

By (3.6) and Lemma 2.3 we have

(3.7) ||B0
λ|| . λn(β−1/2)−mβ.

For the derivative of Bε
λ with respect to ε one has

d

dε
(Bε

λf(x, xn+1)) = Aε
λf(x, xn+1) + Bε

λf(x, xn+1),
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where Aε
λ contains the derivatives of (1 + |εγ−1(∇ψ)(y/ε)|2)1/2, and in Bε

λ we collect the
differential of the kernel. We have

d

dε

(
1 + ε2γ−2|(∇ψ)(y/ε)|2

)1/2
=
(
1 + ε2γ−2|(∇ψ)(y/ε)|2

)−1/2×[
(2γ − 2)ε2γ−3|(∇ψ)(y/ε)|2 − 2ε2γ−4(∇ψ)T (y/ε)(Hessψ)(y/ε)y

]
.

Now if γ > 3/2 by (2.7) from the last expression we obtain

(3.8) ||Aε
λ|| .ψ a(ε)λn(β−1/2)−mβ+β,

where a(ε) is a positive and integrable function on the interval (0, 1), and the constant
depends on the bound of derivatives of ψ up to second order. We will assume that
β < n

2(n−m+1) to get a decay in the norm of Aε
λ.

Next, we proceed to the estimate of Bε
λ which contains the derivative of the kernel K.

Differentiating the kernel we get

d

dε
K(x− y, xn+1 − εγψ(y/ε)) = ∂n+1K(x− y, xn+1 − εγψ(y/ε))×

[−γεγ−1ψ(y/ε) + εγ−2∇ψ(y/ε) · y].

Thus we get an operator as in (2.7) however the kernel here has higher singularity. Ap-
plying the estimate (2.7) with m replaced by m− 1 implies

(3.9) ||Bε
λ|| .ψ b(ε)λn(β−1/2)−mβ+2β,

which gives a decay if

(3.10) 0 < β <
n

2(n−m+ 2)
.

Here as well, b(ε) is a positive and integrable function on (0, 1).
Now combining estimates (3.8) and (3.9), along with the estimate of B0

λ given by (3.7),
from (3.5) we obtain

(3.11) ||B∗λ|| .ψ λn(β−1/2)−mβ+2β,

which gives a decay if 0 < β < 1 satisfies

(3.12) 0 < β <
n

2(n−m+ 2)
.

Putting together Lemma 3.2 and estimate (3.11) we get

(3.13) ||T ∗λ || .ψ λ−mβ + λn(β−1/2)−mβ+2β,

which holds under the condition (3.12). Optimizing in β gives β = n
2(n+2) which satisfies

(3.12). For this choice of β the proof of the Theorem is complete. �

4. Nonlinear phase

In this section we will consider one particular case of a nonlinear phase function with
an application to the Helmholtz equation. Let ψ0 ∈ C∞0 (Rn × Rn−1) and set K(z) =

|z|−(n−m−1), z ∈ Rn \ {0}, where 0 < m < n − 1, and n ≥ 2. For f ∈ L2(Rn−1) consider
the operator

(4.1) Tλf(x) =

∫
Rn−1

eiλ|x−(y′,0)|γψ0(x, y′)K
(
x− (y′, 0)

)
f(y′)dy′,
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for x ∈ Rn, γ ≥ 1, and λ ≥ 2. We shall study decay of the norm of Tλ as an operator from
L2(Rn−1) to L2(Rn). In this section we denote this norm by ||Tλ||, and have the following
result.

Theorem 4.1. Set α = (n− 1)/2, and assume γ > 1. Then one has

||Tλ|| .


λ
− 1
γ

(m+1/2)
, m < γα− 1/2,

λ−α log λ, m = γα− 1/2,

λ−α, m > γα− 1/2.

4.1. Preliminaries. Before proving Theorem 4.1 we shall make some preliminary obser-
vations. We assume γ ≥ 1 and let

Φ(x′, ξ) = |ξ − (x′, 0)|γ = (|ξ′ − x′|2 + ξ2
n)γ/2 = dγ ,

where d = (|ξ′−x′|2 +ξ2
n)1/2, 1/2 ≤ d ≤ 2, ξ = (ξ′, ξn) ∈ Rn−1×R, and x′ = (x1, ..., xn−1).

We have
∂2Φ

∂xi∂ξj
= −γdγ−2

(
δij + (γ − 2)

xi − ξi
d

xj − ξj
d

)
,

for 1 ≤ i, j ≤ n − 1, where δij is the Kronecker symbol. Setting ai = (xi − ξi)/d for
i = 1, 2, ..., n− 1 we have

∂2Φ

∂xi∂ξj
= −γdγ−2 (δij + (γ − 2)aiaj) .

We set D := det(δij + (γ − 2)aiaj)
n−1
i,j=1. The determinant here can be computed, for

example, by Sylvester’s determinant theorem (cf. “matrix determinant lemma”), which
states that det(Ik+AB) = det(Ip+BA), where matrices A,B have dimensions respectively
k × p and p × k, and Ik and Ip are correspondingly k × k, and p × p identity matrices.

Applying this identity to D we obtain D = 1 + (γ − 2)
∑n−1

i=1 a
2
i . Thus

D = 1 + (γ − 2)
|ξ′ − x′|2

d2
=
|ξ′ − x′|2 + ξ2

n + (γ − 2)|ξ′ − x′|2

d2
=

(γ − 1)|ξ′ − x′|2 + ξ2
n

d2
,

from which we conclude that

(4.2) for γ > 1 one has D ≥ c > 0 for
1

2
≤ d ≤ 2,

and

(4.3) for γ = 1 one has D ≥ c > 0 for
1

2
≤ d ≤ 2 and |ξn| ≥ c1 > 0.

For the proof of Theorem 4.1 we will use the following result.

Theorem 4.2. (see Stein [7], p. 377) Let ψ1 ∈ C∞0 (Rn × Rn) and λ > 0 and let Φ be
real-valued and smooth. Set

Uλf(ξ) =

∫
Rn
eiλΦ(x,ξ)ψ1(x, ξ)f(x)dx, ξ ∈ Rn,

and assume that det
(
∂2Φ(x,ξ)
∂xi∂ξj

)
6= 0 on the support of ψ1. Then one has

||Uλf ||L2(Rn) ≤ Cλ−n/2||f ||L2(Rn).

We next give the proof of the main result of this section.
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4.2. Proof of Theorem 4.1. We start with a decomposition of the kernel K. Following
Stein [7] page 393, there exists a function ψ ∈ C∞0 (Rn) such that suppψ ⊂ {x ∈ Rn : 1

2 ≤
|x| ≤ 2}, and

K(z) =
∞∑

k=−∞
2k(n−1−m)ψ(2kz).

As such function one may take ψ(z) = |z|−(n−1−m)[η(z) − η(2z)] where η is a smooth
function satisfying η(y) = 1 for |y| ≤ 1 and η(y) = 0 for |y| ≥ 2. It is clear that there is
k0 ∈ Z such that

K(z) =
∞∑

k=k0

2k(n−1−m)ψ(2kz), for z = x− (y′, 0) where (x, y′) ∈ suppψ0.

We will assume that k0 = 0, the proof in the general case is the same. We get

Tλf =

∞∑
k=0

Tλ,kf,

where

Tλ,kf(x) =

∫
Rn−1

eiλ|x−(y′,0)|γψ0(x, y′)2k(n−1−m)ψ
(
2k(x− (y′, 0))

)
f(y′)dy′.

From an application of Hardy-Littlewood’s maximal operator (see the proof of Lemma 2.2)
we have ||Tλ,k|| = ||Tλ,k||L2(Rn−1)7→L2(Rn) ≤ C2−mk. Here we shall improve this estimate.

Take ϕ ∈ C∞0 (R) such that suppϕ ⊂ [−1
2 −

1
10 ,

1
2 + 1

10 ] and
∞∑

j=−∞
ϕ(t − j) = 1. Set

ϕj(t) = ϕ(t− j), and for t = (t1, ..., tn−1) define χ(t) := ϕ(t1)ϕ(t2) · ... ·ϕ(tn−1). Then, for
j = (j1, ..., jn−1) ∈ Zn−1 set

χj(t) := χ(t− j) = ϕj1(t1)ϕj2(t2) · ... · ϕjn−1(tn−1).

Clearly
∑

j∈Zn−1

χj(t) = 1, and

1 =
∑

j∈Zn−1

χj(2
kt) =

∑
j∈Zn−1

χ(2kt− j) =
∑

j∈Zn−1

χ
(
2k(t− 2−kj)

)
.

Setting fj(t) := f(t)χ
(
2k(t− 2−kj)

)
, implies

f =
∑

j∈Zn−1

fj .

We get the following decomposition

Tλ,kf(x) =
∑

j∈Zn−1

Tλ,kfj(x),

and for every x the sum has only a bounded number of non-vanishing terms. Therefore
by Cauchy-Schwarz we obtain

(4.4) |Tλ,kf(x)|2 ≤ C
∑

j∈Zn−1

|Tλ,kfj(x)|2,
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where the constant C is independent of x, λ, and k. We have

Tλ,kfj(x) =

∫
Rn−1

eiλ|x−(y′,0)|γψ0(x, y′)2k(n−1−m)ψ
(
2k(x− (y′, 0))

)
fj(y

′)dy′ =

[
with y′ = 2−kz′

]
2−mk

∫
Rn−1

eiλ|x−2−k(z′,0)|γψ0(x, 2−kz′)ψ
(
2kx− (z′, 0)

)
fj(2

−kz′)dz′,

and

fj(2
−kz′) = f(2−kz′)χ

(
2k(2−kz′ − 2−kj)

)
= f(2−kz′)χ(z′ − j).

Hence

Tλ,kfj(x) = 2−mk
∫

Rn−1

eiλ2−kγ |2kx−(z′,0)|γψ0(x, 2−kz′)ψ
(
2kx−(z′, 0)

)
f(2−kz′)χ(z′−j)dz′ =

[
with y′ = z′ − j

]
2−mk

∫
Rn−1

eiλ2−kγ |2kx−(y′+j,0)|γψ0

(
x, 2−k(y′ + j)

)
ψ
(
2kx− (y′ + j, 0)

)
×

f
(
2−k(y′ + j)

)
χ(y′)dy′ = 2−mk

∫
Rn−1

eiλ2−kγ|2k(x−(2−kj,0))−(y′,0)|γψ0(x, 2−kj + 2−ky′)×

ψ
(
2k(x− (2−kj, 0))− (y′, 0)

)
f(2−kj + 2−ky′)χ(y′)dy′.

We also have∫
Rn

|Tλ,kfj(x)|2dx =
[
with x = u+ (2−kj, 0)

]
∫
Rn

∣∣∣Tλ,kfj(u+ (2−kj, 0)
)∣∣∣2 du =

[
with ξ = 2ku

]
2−kn

∫
Rn

∣∣∣Tλ,kfj(2−kξ + (2−kj, 0)
)∣∣∣2 dξ.

Now let χ̃ ∈ C∞0 (Rn−1) be so that χ̃ = 1 on suppχ and suppχ̃ ⊂ [−1, 1]n−1. We then have

Tλ,kfj
(
2−kξ+(2−kj, 0)

)
= 2−mk

∫
Rn−1

eiλ2−kγ |ξ−(y′,0)|γψ0(2−kξ+(2−kj, 0), 2−kj+2−ky′)×

ψ
(
ξ − (y′, 0)

)
f(2−kj + 2−ky′)χ(y′)χ̃(y′)dy′ = 2−mk

∫
Rn−1

eiλ2−kγΦ(y′,ξ)ψ1(y′, ξ)g(y′)dy′ :=

2−mkUλ2−kγg(ξ),

where

(4.5) Φ(y′, ξ) = |ξ − (y′, 0)|γ =
(
|ξ′ − y′|2 + ξ2

n

)γ/2
,

ψ1(y′, ξ) = ψ
(
ξ − (y′, 0)

)
ψ0

(
2−kξ + (2−kj, 0), 2−kj + 2−ky′

)
χ̃(y′),

and

g(y′) = f(2−kj + 2−ky′)χ(y′).

It is clear that for R > 0 large enough, independently of j and k, one has

suppψ1 ⊂ B(0, R)×B(0, R),
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and that the derivatives of ψ1 can be bounded uniformly in k and j. We have(∫
Rn
|Tλ,kfj(x)|2dx

)1/2

= 2−kn/22−mk
(∫

Rn
|Uλ2−kγg(ξ)|2dξ

)1/2

and we shall now use Theorem 4.2. It follows from (4.2) that the determinant condition
in Theorem 4.2 is satisfied and hence we obtain(∫

Rn−1

|Uλ2−kγg(ξ′, ξn)|2dξ′
)1/2

≤ C(λ2−kγ)−α
(∫

Rn−1

|g(x′)|2dx′
)1/2

,

where α = (n− 1)/2. Integration in ξn demonstrates

||Uλ2−kγg||L2(Rn) ≤ Cλ−α2kγα||g||L2(Rn−1).

We also have

||g||2L2(Rn−1) =

∫
|y′|≤

√
n

|f(2−kj + 2−ky′)|2dy′ = [with z′ = 2−ky′]

2k(n−1)

∫
|z′|≤2−k

√
n

|f(2−kj + z′)|2dz′.

Here g = gj,k and it is easy to see that∑
j∈Zn−1

∫
Rn−1

|gj,k(y′)|2dy′ ≤ C2k(n−1)||f ||2L2(Rn−1).

Invoking (4.4) we obtain∫
Rn
|Tλ,kf(x)|2dx ≤ C

∑
j∈Zn−1

∫
Rn
|Tλ,kfj |2dx ≤

C2−kn2−2mk(λ−α2kγα)2
∑
j

∫
Rn−1

|gj,k|2dy′ ≤

C2−kn2−2mk(λ−α2kγα)22k(n−1)

∫
Rn−1

|f |2dy′

and hence

(4.6) ||Tλ,k|| ≤ C2−k/22−mkλ−α2kγα.

In this estimate λ−α2kγα can be replaced by 1, since we can make a trivial estimate instead
of using Theorem 4.2. Thus we also have

(4.7) ||Tλ,k|| ≤ C2−k/22−mk.

It follows that

||Tλ|| ≤
∞∑
k=0

||Tλ,k|| . λ−α
∑

2k≤λ1/γ
2(γα−m−1/2)k +

∑
2k≥λ1/γ

2−(m+1/2)k.

For m < γα− 1/2 we have γα−m− 1/2 > 0 and

||Tλ|| . λ−αλ(γα−m−1/2)/γ + λ−(m+1/2)/γ ≤ Cλ−(m+1/2)/γ .

If m = γα− 1/2 one has γα−m− 1/2 = 0 and

||Tλ|| . λ−α log λ+ λ−α ≤ Cλ−α log λ.
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Finally, for m > γα− 1/2 we have γα−m− 1/2 < 0 and

||Tλ|| . λ−α + λ−(m+1/2)/γ ≤ Cλ−α,

and the proof of the Theorem is complete. �

4.2.1. The case of γ = 1, and the Helmholtz equation. Here we set K(z) =

|z|−(n−1−m)ω(z), where ω ∈ C∞(Rn \ {0}), is homogeneous of degree 0, and ω(z) = 0
for all |z| = 1 satisfying |zn| ≤ ε, for some given ε > 0. The method of the proof of
Theorem 4.1 combined with (4.3) gives

(4.8) ||Tλ|| .


λ−(m+1/2), m < n/2− 1,

λ−α log λ, m = n/2− 1,

λ−α, m > n/2− 1,

with α = (n− 1)/2.
We now discuss how the analysis can be applied to Helmholtz equation. In R3 consider

a smooth hypersurface Γ given by (1.1), and fix some ϕ0 ∈ C∞0 (R3). Let σΓ be the surface
measure of Γ, and for a measure µΓ = ϕ0(y)dσΓ(y) let uλ be a solution to the following
inhomogeneous Helmholtz equation

(4.9) ∆u+ λ2u = −µΓ in R3.

We denote by Gλ(·, ·) the fundamental solution (Green’s function) of (4.9). It is well

known that Gλ(x, y) = eiλ|x−y|/(4π|x − y|) where x, y ∈ R3, x 6= y. Now let uλ be the
solution to (4.9) given in terms of the Green’s function, namely

(4.10) uλ(x) =

∫
R3

Gλ(x, y)dµΓ(y).

This is precisely the solution to (4.9) satisfying Sommerfeld radiation condition, which in
dimension three reads

lim
r→∞

r

(
∂

∂r
− iλ

)
uλ(rν) = 0,

uniformly for all directions ν ∈ S2, where i is the imaginary unit. From (4.10) we have

(4.11) uλ(x) =

∫
Γ

eiλ|x−y|

4π|x− y|
ϕ0(y)dσΓ(y), x ∈ R3.

Let us show here how to obtain decay estimates on uλ, as λ → ∞, in the case when Γ is
a plane. Assume ν ∈ R3 is the unit normal to Γ, thus Γ = {y ∈ R3 : y · ν = 0}. Fix any
3× 3 orthogonal matrix M such that Me3 = ν, where e3 = (0, 0, 1). Next, make a change
of variables in (4.11) by the formula y = Mz, and x = Mw, where w, z ∈ R3. We get

(4.12) uλ(x) = uλ(Mw) =

∫
z3=0

eiλ|Mw−Mz|

4π|Mw −Mz|
ϕ0(Mz)dσ(z) =∫

R2

eiλ|w−(z′,0)|

4π|w − (z′, 0)|
ϕ0(M(z′, 0))dz′, x, w ∈ R3.

Thus the case of an arbitrary plane, by a rotation, is easily reduced to the case of
y3 = 0 in R3. Now, if we have a bounded domain D ⊂ R3 which stays within a positive
distance from Γ, then the determinant condition (4.3) will be satisfied for all x ∈ D. Next,
using the argument of Theorem 4.1 as we do for (4.8), with n = 3 and m = 1 one may
show from (4.12) that

(4.13) ||uλ||L2(D) .D λ−1|D|1/2,
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where the constant in the inequality depends on the distance of D and the plane Γ. Thus,
in this particular case we get a quantitative decay estimate of the L2-norm of solutions uλ
as the eigenvalue tends to infinity.

When we allow D to cross the plane Γ, the determinant condition in (4.3) becomes
invalid. However, this scenario can be handled by splitting the integral in (4.12) by means
of a smooth cut-off into two regions, where one of them stays away from Γ, and the other
one is in a small neighbourhood of Γ. The former will be estimated as above, relying on
(4.3), while the latter will be handled using the smallness of the support of the cut-off and
uniform boundedness of uλ. Thus, one may obtain decay estimates on uλ in this setting
as well relying on the methods discussed in the paper, however, the rate of decay will be
worse than λ−1. In a similar vein we may handle the case when Γ is a union of some finite
number of planes in R3, by applying the analysis on each flat piece of Γ separately. The
details are left as an exercise for an interested reader.

It should be noted that at this stage our analysis does not extend to the case of a
general hypersurface and more interestingly to the case of oscillating (rough) boundaries
considered in subsection 2.1 and Section 3. Understanding the properties of the operator
(4.1) in this generality seems to be a very interesting problem. Another interesting problem
here is to understand if the operators Tλ with non integer γ can be applied to the study
of fractional order Helmholtz operators. It was to our surprise that there were virtually
no results in the literature concerning fundamental solutions of fractional order Helmholtz
equations.

4.2.2. The case of γ = 2. We have γα− 1/2 = n− 1− 1/2 = n− 3/2. For m < n− 3/2
we have proved that

(4.14) ||Tλ||L2(Rn−1)7→L2(Rn) ≤ Cλ−(m/2+1/4).

Now set

Sλf(x) =

∫
Rn−1

eiλx
′·y′ψ0(x, y′)K(x− (y′, 0))f(y′)dy′.

We have
2x′ · y′ = 2x · (y′, 0) = |x|2 + |y′|2 − |x− (y′, 0)|2

and
ei2λx

′·y′ = eiλ|x|
2
eiλ|y

′|2eiλ|x−(y′,0)|2 .

Combination of this inequality and (4.14) gives

(4.15) ||Sλ||L2(Rn−1)7→L2(Rn) ≤ Cλ−(m/2+1/4).

On the other hand taking β = 1/2 in Lemmas 2.2 and 2.3 we obtain

(4.16) ||Sλ||L2(Rn−1) 7→L2(Rn−1) ≤ Cλ−m/2.
It is interesting to observe that we have a better decay in (4.15) than in (4.16).

4.3. Lower bounds. Here we construct examples for which the upper bounds (4.15),
(4.16), and the first estimate of Theorem 4.1 are attained, showing that these estimates
are best possible.

We start with an example showing that m/2 in (4.16) can not be replaced by a larger

number. Take x′0 ∈ Rn−1 and set F = {x′ ∈ Rn−1 : |x′ − x′0| ≤ c0λ
−1/2} where c0 is a

small constant, which will be specified in due course. Then choose y′0 ∈ Rn−1 such that

|x′0 − y′0| = 100c0λ
−1/2 and set E = {y′ ∈ Rn−1 : |y′ − y′0| ≤ c0λ

−1/2}. We have

x′ · y′ = (x′ − x′0) · (y′ − y′0) + (x′ − x′0) · y′0 + x′0 · y′

and
eiλx

′·y′ = eiλ(x′−x′0)·(y′−y′0)eiλ(x′−x′0)·y′0eiλx
′
0·y′ .
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Setting f(y′) = e−iλx
′
0·y′IE(y′) we obtain

Sλf(x) = eiλ(x′−x′0)·y′0
∫
Rn−1

eiλ(x′−x′0)·(y′−y′0)ψ0(x, y′)eiλx
′
0·y′K(x− (y′, 0))f(y′)dy′ =

eiλ(x′−x′0)·y′0
∫
Rn−1

ψ0(x, y′)eiλ(x′−x′0)·(y′−y′0)K(x− (y′, 0))IE(y′)dy′ =

eiλ(x′−x′0)·y′0
∫
E
ψ0(x, y′)K(x− (y′, 0))dy′+

eiλ(x′−x′0)·y′0
∫
E
ψ0(x, y′)

(
eiλ(x′−x′0)·(y′−y′0) − 1

)
K(x− (y′, 0))dy′ :=

P (x) +R(x),

where we have

|R(x)| ≤ C
∫
E
λ|x′ − x′0||y′ − y′0|K(x− (y′, 0))dy′ ≤

C

∫
E
λc0λ

−1/2c0λ
−1/2K(x− (y′, 0))dy′ = Cc20

∫
E
K(x− (y′, 0))dy′,

for x′ ∈ F . We now take x = (x′, 0) and assume that ψ0((x′, 0), y′) = 1 for x′ ∈ F and
y′ ∈ E. We then have

|P (x)| =
∫
E
K(x′ − y′, 0)dy′,

and

|R(x)| ≤ Cc2
0

∫
E
K(x′ − y′, 0)dy′, for x′ ∈ F.

Choosing c0 small, for x′ ∈ F we obtain

|Sλf(x′, 0)| ≥ 1

2

∫
E

1

|x′ − y′|n−1−mdy
′ ≥ c(λ−1/2)n−1 1

λ−(n−1−m)/2
= cλ−m/2.

It follows that (∫
Rn−1

|Sλf(x′, 0)|2dx′
)1/2

≥ cλ−m/2|F |1/2.

But ||f ||2 = |E|1/2 = |F |1/2 and hence

||Sλ||L2(Rn−1)→L2(Rn−1) ≥ cλ−m/2.

Thus we have proved that (4.16) is sharp.

We shall then prove that (4.15) is sharp as well, for which we will use the construction

described above. Define F1 := F × [0, c0λ
−1/2] and assume that ψ0(x, y′) = 1 for x ∈ F1

and y′ ∈ E. Now for x ∈ F1 we obtain as above that Sλf(x) = P (x) +R(x) where

|P (x)| =
∫
E
K(x′ − y′, xn)dy′.

It follows that for x ∈ F1 we have

|Sλf(x)| ≥ 1

2

∫
E

1

λ−(n−1−m)/2
dy′ ≥ cλ−m/2,

hence (∫
Rn
|Sλf(x)|2dx

)1/2

≥ cλ−m/2λ−n/4,
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since |F1| = cλ−n/2. But

||f ||2 = |E|1/2 = cλ−(n−1)/4 = cλ−n/4+1/4,

and consequently

||Sλ||2 ≥ c||f ||2λ−m/2−1/4,

which shows that

||Sλ||L2(Rn−1) 7→L2(Rn) ≥ cλ−(m/2+1/4).

Thus we have proved that (4.15) is sharp.

Finally we turn to the first estimate of Theorem 4.1. For γ > 1 we have

Tλf(x) =

∫
Rn−1

eiλ|x−(y′,0)|γψ0(x, y′)K(x− (y′, 0))f(y′)dy′

and we shall estimate the norm of Tλ from below. Set F := B(x′0, c0λ
−β), F1 := F ×

[0, c0λ
−β], and E := B(y′0, c0λ

−β), where |x′0 − y′0| = 100c0λ
−β. Here B(x,R) denotes a

ball with a center x and radius R. We assume that ψ0(x, y′) = 1 for x ∈ F1 and y′ ∈ E.
Letting x ∈ F1 and f = IE we have

Tλf(x) =

∫
E
K(x− (y′, 0))dy′ +

∫
E

(
eiλ|x−(y′,0)|γ − 1

)
K(x− (y′, 0))dy′ := P (x) +R(x).

Choosing β = 1/γ for x ∈ F1 and y′ ∈ E implies

|eiλ|x−(y′,0)|γ − 1| ≤ λ|x− (y′, 0)|γ ≤ Cc0λλ
−βγ ≤ Cc0.

It follows that

|R(x)| ≤ Cc0
∫
E
K(x− (y′, 0))dy′.

Now taking c0 small we obtain

|Tλf(x)| ≥ c
∫
E
K(x− (y′, 0))dy′ ≥ c

∫
E

dy′

λ−β(n−1−m)
= Cλ−βm

and (∫
F1

|Tλf |2dx
)1/2

≥ cλ−βmλ−βn/2,

since |F1| ≥ cλ−βn. But ||f ||2 = cλ−β(n−1)/2 = cλ−βn/2λβ/2 and hence

||Tλ|| ≥ cλ−βmλ−β/2 = cλ−β(m+1/2) = cλ−(m+1/2)/γ .

In Theorem 4.1 we proved that

||Tλ|| ≤ Cλ−(m+1/2)/γ ,

for m < γα−1/2 = γn/2−γ/2−1/2 and thus we have proved that this estimate is sharp.
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