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Abstract

In this paper we prove convergence results for homogenization problem for solu-
tions of partial differential system with rapidly oscillating Dirichlet data. Our method
is based on analysis of oscillatory integrals. In the uniformly convex and smooth
domain, and smooth operator and boundary data, we prove pointwise convergence
results, namely

|uε(x)− u0(x)| ≤ Cκε(d−1)/2 1
d(x)κ

, ∀x ∈ D, ∀ κ > d− 1,

where uε and u0 are solutions of respectively oscillating and homogenized Dirichlet
problems, and d(x) is the distance of x from the boundary of D. As a corollary for
all 1 ≤ p <∞ we obtain Lp convergence rate as well.

Keywords. Elliptic systems, Homogenization, Oscillatory Integrals

1 Introduction and main results

Homogenization in partial differential equation is a well studied topic, and with a ma-
jor impact in applications, in particular in material sciences, where impurities of material
tend to spread all over and affect both qualitative and quantitative analysis of the ma-
terials properties. In situations as such, one tries to make an approximate averaging of
impure quantities, to reduce the cost of any numerical computations. The averaging and
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homogenization technique is now a well developed tool, with an abundance of literatures
on the topic. Most of these literatures, so far, take on the analysis of the bulk equation,
that relates to the heterogeneity of the material; e.g. highly oscillating flux, turbulences,
singularly perturbed equations. We refer to the book of Bensoussan-Lions-Papanicolaou
[BLP] for background and overview.

The problem of homogenizing the boundary data for Dirichlet problem has long been
a challenging task, and there are very few and incomplete results in this direction. We
refer to a recent paper of D. Gérard-Varet and N. Masmoudi [GM] for an introduction
as well as some background in the topic; see also [LS]. The problem of homogenization
of boundary data has shown to be an extremely hard problem, with deep connections to
ergodic and number theory, and diophantine approximation!

To explain this to some extent, let us (for simplicity) consider the problem of finding a
harmonic function in a (bounded) domain D in Rd (d ≥ 2), with an oscillating boundary
data g(x/ε), where g is a continuous 1-periodic function in Rd. Such a solution can be
expressed by Poisson representation

uε(x) =

∫
∂D

P (x, y)g(y/ε)dσ(y), (1.1)

where P (x, y) = n(y)A(y)∇yG(x, y), with n(y) the outward unit normal to ∂D at y, G
the Greens function and A the matrix representing the operator; see (1.2)-(1.3). For the
Laplacian/harmonic case A is the identity matrix.

If, instead of harmonic functions, we consider solutions to general operators of diver-
gence type, then a similar representation is possible through the Poisson kernel of that
operator. In particular our method is heavily reliant on such a representation. To our best
knowledge, this approach was first introduced in [LS].

The study of limit behavior of the solution now reduces to study of the integral above.
In [LS], the authors use approximation, along with simple compactness and covering to
show that when the surface ∂D does not have flat portions of positive area, with rational
normals, then the limit exists and equals |∂D|g. The identification of the limiting bound-
ary value is an easy task, once one can use simple foliation geometry, and whether the
so-called scaling surfaces cover the torus. This identification, nevertheless, becomes quite
complicated if the operator is also oscillating, in other words if the matrix A in (1.2)-(1.3)
is periodic and oscillating A(x/ε). We refer to [GM] for such an analysis.

It is our intention in this paper, to analyze the speed of convergence for a (non-
oscillating) elliptic system, with an oscillating boundary data. The method presented here,
does not seem to extend directly to the case of oscillating equations, and needs modifi-
cation for such an analysis. However, for oscillating boundary data we are able to obtain
reasonably good pointwise estimates which imply Lp estimates of order close to 1/2p.

Readers may consult several outstanding sources for the theory of homogenization and
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the references therein: [AA], [JKO], [AL], [CPS], [CD], [Tar].
To state the problem at hand, let us start with fixing some notation, and definitions.
Let D be a bounded and uniformly convex domain in Rd (d ≥ 2), and Γ be its bound-

ary. In this paper we study the asymptotic behavior of solutions to the following problem:{
div(A(x)∇uε(x)) = 0, in D,
uε(x) = g(x/ε), on Γ,

(1.2)

where ε > 0 is a small parameter, A(y) = (Aαβij (y)), 1 ≤ α, β ≤ d, 1 ≤ i, j ≤ N is
an RN2×d2-valued function defined on Rd, and g be CN -valued function defined on Td.
Using the summation convention for repeated indices the operator is defined as

L := −div [A(x)∇] = − ∂

∂xα

[
Aαβij (x)

∂

∂xβ

]
. (1.3)

We also consider the corresponding homogenized problem, namely{
div(A(x)∇u0(x)) = 0, in D,
u0(x) = g, on Γ,

(1.4)

where g =
∫
Td
g(x)dx. Due to results of [LS] solutions to (1.2) converges to (1.4) under

certain geometric conditions on the boundary of D, which include the case of strictly
convex domains.

1.1 Assumptions

We make the following assumptions:

i (Periodicity) The boundary value g is 1-periodic:

g(x+ h) = g(x), ∀x ∈ Rd, ∀h ∈ Zd.

ii (Ellipticity) There exists a constant c > 0 such that

c−1ξiαξ
i
α ≤ Aαβij (y)ξiαξ

j
β ≤ cξiαξ

i
α, ∀ξ ∈ Rd×N ,

iii (Convexity) We assume that Γ is uniformly convex hypersurface, that is all its prin-
cipal curvatures are bounded away from 0. The constants then depend on the small-
est principal curvature.

iv (Smoothness) For the boundary value g we assume C1 smoothness. Also we sup-
pose that all elements of A and the surface Γ are sufficiently smooth. Here we do
not aim to obtain the optimal smoothness, but rather focus on the method itself.
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Our main result is the following theorem.

Theorem 1.1. (Pointwise estimate) Let D ⊂ Rd be a bounded, smooth, and uniformly
convex domain. For each κ > d− 1 there exists a constant Cκ such that

|uε(x)− u0(x)| ≤ Cκε
(d−1)/2 1

d(x)κ
, ∀x ∈ D (1.5)

where d(x) is the distance of x from the boundary of D. The constant Cκ depends on the
smallest principal curvature, and other operator related ingredients.

As a consequence of this theorem one can obtain Lp-estimates for 1 ≤ p < ∞, as
follows.

Theorem 1.2. (Lp estimate) LetD ⊂ Rd be as in Theorem 1.1. Then for each 1 ≤ p <∞,
and each κ < 1/2p there exists a constant Cκ such that

||uε − u0||Lp(D) ≤ Cκε
κ.

Ideas in the proof: The main idea in the proof is quite simple. Using the Poisson repre-
sentation as in (1.1), in conjunction with a Fourier expansion of the oscillating periodic
function g(x/ε) one realizes that all we need to do is to consider this as the Fourier trans-
form of a surface carried measure, with singular weight. The problem thus reduces to
studying the behavior of this Fourier transform. Such problems have been extensively
studied in the past, in connection to Hilbert transforms, and singular integrals, see e.g.
[PS]. It is nevertheless, not so apparent how one can apply the already existing results and
methods to the particular case of our integral. But to stay fair, and not take a complete
credit for the methodology presented here, we have to stress that the novelty of our paper
is the suggestion of the approach rather than the technique itself. These techniques are
fairly standard in Harmonic Analysis, and are based on careful estimates, rather than neat
use of geometry, that is more usual in PDE.

We believe that our method can pave the way for further deepening into the subject, at
least for the divergence type operators. It surely has the potential of being applied to other
areas such as dynamical system and even number theory. But we leave this discussions
out here, as the ideas are still very vague, and focus on the main problem.

2 Preliminaries

2.1 Notation

For ε > 0 set gε(x) := g(x/ε). For x ∈ Rd and r > 0 by B(x, r) := {y ∈ Rd : |x− y| <
r} we denote an open ball with center x and radius r. By P (x, y) we set the vector-valued
Poisson kernel for (1.2).



Homogenization of the Dirichlet problem, Pointwise Estimates 5

Here we recall some standard multi-index notation. For a multi-index α = (α1, ..., αd) ∈
Zd, and for a point x = (x1, ..., xd) ∈ Rd we denote xα := xα1

1 · ... · x
αd
d , for m =

(m1, ...,md) ∈ Zd we set |m| := |m1|+ ...+ |md|. Also by ||m|| we denote the Euclidian
norm of m to avoid ambiguity with its modulus.

In the sequel C, C1, C2,... will denote absolute constants which can vary in different
formulas.

2.2 Preliminary tools

Lemma 2.1. For each α ∈ Zd
+ there exists a constant Cα such that

|Dα
yP (x, y)| ≤ Cα

1

|x− y|d+|α|−1
, x ∈ D, y ∈ Γ. (2.1)

Proof. We first consider the case when d ≥ 3. Let G(x, y) be the Green’s function of
operator L := div(A∇) in D, and let n(y) be the unit exterior normal to Γ at y. Then the
Poisson kernel P (x, y) is defined as

P (x, y) = n(y)A(y)∇yG(x, y), x ∈ D, y ∈ Γ,

hence it is enough to prove that

|Dα
yG(x, y)| ≤ Cα

1

|x− y|d+|α|−2
, x ∈ D, y ∈ Γ,

where Cα depends on sup norm of G, and the operator L.
Fix x ∈ D, y ∈ Γ, and set r = |x − y|. Consider translated and scaled domain

D̃ := 1
r
(D − x), and set U = (B2(0) \ B1/2(0)) ∩ D̃. Since G̃(z) := rd−2G(x, rz + x)

will be a solution of the scaled problem, and since the domain U and all coefficients of the
operator are smooth, then by standard elliptic estimates (see [ADN1]-[ADN2]) we will
have

|Dα
z G̃(z)| ≤ Cα, z ∈ D̃,

for some constant Cα depending on α and independent of r. From the latter we obtain

Cα ≥ |rd−2r|α|Dα
yG(x, rz + x)| = rd−2+|α||Dα

yG(x, y)|,

hence the claim.
The case d = 2 is treated in analogy with Theorem 13 in [AL].

Lemma 2.2. There exists a constant c > 0 depending on space dimension only, such that∑
α1+...+αd=k

|mα| ≥ c||m||k,

where k ∈ N, m ∈ Zd, and α ∈ Zd
+.
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Proof. Consider the function

f(x) =
1

||x||k
∑

α1+...+αd=k

|x1|α1 · ... · |xd|αd ,

where x 6= 0. Clearly it is continuous and positive on the unit sphere, hence c :=

min
||x||=1

f(x) > 0. Also observe that f(tx) = f(x) for each t > 0. Now the statement

can be read off.

Lemma 2.3. If f ∈ Ck(Td) and β ∈ R, then provided k + β > 1
2
d, one has

∑
m6=0,m∈Zd

1

||m||β
|cm(f)| ≤ Ck+β

 ∑
α∈Zd+,|α|=k

||Dαf ||22

1/2

,

where cm(f) =
∫
Td
f(x)e−2πim·xdx is the m-th Fourier coefficient of f .

Proof. First observe that using integration by parts we get cm(f) = 1
(2πim)α

cm(Dα(f)),
for each m ∈ Zd \ {0} and each α ∈ Zd

+ with α1 + ...+ αd ≤ k.
Since Dα(f) ∈ L2(Td) from Parseval we have∑

m 6=0

∑
α1+...+αd=k

|mαcm(f)|2 ≤
∑

α1+...+αd=k

||Dαf ||22. (2.2)

From Lemma 2.2, and Hölder inequality we obtain

∑
m 6=0

|cm(f)|
||m||β

≤ C
∑
m6=0

|cm(f)|
||m||β

(
||m||−2k

∑
α1+...+αd=k

|m1|2α1 · ... · |md|2αd
)1/2

=

C
∑
m 6=0

|cm(f)|

( ∑
α1+...+αd=k

|m1|2α1 · ... · |md|2αd
)1/2

 ||m||−(k+β) ≤

C

(∑
m 6=0

∑
α1+...+αd=k

|mα|2|cm(f)|2
)1/2(∑

m 6=0

||m||−2(k+β)

)1/2

.

The second factor is finite due to condition k + β > d/2 of the lemma. The conclusion
now follows from (2.2).

Now we formulate and prove our main lemma. Let ξ = (ξ1, ..., ξd) ∈ Rd (d ≥ 2) be
fixed, ξ′ = (ξ1, ..., ξd−1), a0 and ρ be small positive numbers. Assume that for a function
ψ : Rd−1 → R we have ψ ∈ C∞(B(0, b)), ψ(0) = 0, |Dαψ(z′)| ≤ Cα, and∣∣∣∣∣det

(
∂2ψ

∂z′i∂z
′
j

)d−1

i,j=1

(z′)

∣∣∣∣∣ ≥ c > 0,
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for each α ∈ Zd−1
+ and z′ ∈ B(0, b).

Assume further u : Rd−1 → R satisfies u ∈ C∞(B(0, a0)), supp(u) ⊂ B(0, 3
4
a0), and

|Dαu(z′)| ≤ Cα for each α ∈ Zd−1
+ and z′ ∈ B(0, a0).

Lemma 2.4. Under the assumptions and notation above for (d− 1)-dimensional integral

J =

∫
|z′|<a0

e2πi(ξ′·z′+ξd
1
ρ
ψ(ρz′))u(z′)dz′

one has

|J | ≤ C(ρ|ξ|)−(d−1)/2.

Proof. Set λ(η1, η2) = (ξ′, ρξd) with λ = (|ξ′|2 + ρ2ξ2
d)

1/2 and η2
1 + η2

2 = 1. Clearly
λη1 = ξ′ and λη2 = ρξd. Note that since λ ≥ (ρ2|ξ′|2 + ρ2ξ2

d)
1/2 = ρ|ξ|, it is enough to

prove that

|J | ≤ Cλ−(d−1)/2. (2.3)

Denote F (z′) := η1 · z′+η2
1
ρ2
ψ(ρz′). Clearly∇F (z′) = η1 +η2

1
ρ
∇ψ(ρz′). Then we have

J =

∫
|z′|<a0

e2πiλF (z′)u(z′)dz′.

Case 1.∇ψ(0) = 0 and d = 2.
For |η2| ≤ c1, where c1 is a small constant, we have |F ′(z′)| > c2 > 0. Here we can

invoke integration by parts in J , and using the fact that the derivatives of u are bounded
get an estimate |J | ≤ Cλ−M , where M > 0 is large, and hence also (2.3) for d = 2.

If |η2| > c1 we get |F ′′(z′)| ≥ c2 > 0 since F ′′(z′) = η2ψ
′′(ρz′) and ψ′′(0) 6= 0.

We therefore can apply van der Corput’s Lemma (see [S], p. 334) and obtain the estimate
|J | ≤ Cλ−1/2.
Case 2.∇ψ(0) = 0 and d > 2.

We first assume that |η2| ≤ c1, where c1 > 0 is a small constant. As in the case d = 2

we integrate by parts and obtain |J | ≤ Cλ−M where M > 0 is large, and hence (2.3)

follows.
It remains to study the case when |η2| ≥ c1. We set Qρ(z

′) = −1
ρ
∇ψ(ρz′), and get

∇F (z′) = η2

(
η1

η2

+
1

ρ
∇ψ(z′)

)
= η2

(
η1

η2

−Qρ(z
′)

)
,

hence z′ is a critical point of F if and only if Qρ(z
′) = η1

η2
. Observe, that since the Hessian

matrix of ψ is non zero at z′ = 0 it follows that the mapping z′ 7→ y = Qρ(z
′) is one-to-

one close to the origin for every small ρ > 0.
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We have F (z′) = η2f(z′) where

f(z′) =
η1

η2

· z′ + 1

ρ2
ψ(ρz′),

∇f(z′) =
η1

η2

+
1

ρ
∇ψ(ρz′) =

η1

η2

−Qρ(z
′),

and D2f(z′) = D2ψ(ρz′), where D2 denotes the Hessian matrix. We have

J =

∫
|z′|<a0

e2πiλη2f(z′)u(z′)dz′,

where supp(u) ⊂ B(0, 3
4
a0). Since the determinant of the Hessian matrix of ψ is non

zero at z′ = 0 there exists a ball B(0, R) and a positive constant C1 such that for any
x′, z′ ∈ B(0, R) one has

1

C 1
|x′ − z′| ≤ |Qρ(x

′)−Qρ(z
′)| ≤ C1|x′ − z′|. (2.4)

Clearly we may also assume that |D2f(x′)| ≥ c > 0 for x′ ∈ B(0, R). It follows from
(2.4) that

1

C 1
|x′ − z′| ≤ |∇f(x′)−∇f(z′)| ≤ C1|x′ − z′|,

and using the fact that∇ψ(0) = 0 we obtain

1

C 1
|z′| ≤ |Qρ(z

′)| ≤ C1|z′|,

for each x′, z′ ∈ B(0, R). One can see that there exists a neighborhood M of 0 such
that if x′ ∈ M then there exists z′ ∈ B(0, 1

4
R) with Qρ(z

′) = x′. Here the constants
R, C1, and the neighborhood M are independent of η and ρ. Then choose a0 so that
B(0, a0) ⊂ B(0, 1

4
R) and B(0, 2C1a0) ⊂M.

First assume that
∣∣∣η1η2 ∣∣∣ ≥ 2C1a0. We have

|∇f(z′)| =
∣∣∣∣η1

η2

−Qρ(z
′)

∣∣∣∣ ≥ ∣∣∣∣η1

η2

∣∣∣∣− |Qρ(z
′)| ≥

2C1a0 − C1|z′| ≥ 2C1a0 − C1a0 = C1a0, |z′| ≤ a0.

Hence we can integrate by parts in J and obtain the inequality (2.3). We then assume that∣∣∣η1η2 ∣∣∣ < 2C1a0. In this case η1
η2
∈M and there exists z′0 ∈ B(0, 1

4
R) such that Qρ(z

′
0) = η1

η2
,

that is z′0 is a critical point for f . We have∇f(z′0) = 0 and therefore

1

C 1
|z′ − z′0| ≤ |∇f(z′)| ≤ C2|z′ − z′0| for z′ ∈ B(0, R).
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Now we can use Theorem 7.7.5 from [H] to obtain the estimate (2.3), and thus completing
the proof when ψ(0) = ∇ψ(0) = 0.
Case 3.∇ψ(0) 6= 0:

In this case we set ψ1(z′) = ψ(z′)−∇ψ(0) · z′, so that ψ1(0) = ∇ψ1(0) = 0. Further,
for

H(z′) = ξ′ · z′ + ξd
1

ρ
ψ(ρz′).

we have
H(z′) = ξ′ · z′ + ξd

1

ρ
(ψ1(ρz′) + ρ∇ψ(0) · z′) =

ξ′ · z′ + ξd∇ψ(0) · z′ + ξd
1

ρ
ψ1(ρz′) = (ξ′ + ξd∇ψ(0)) · z′ + ξd

1

ρ
ψ1(ρz′).

Next setting {
v′ = ξ′ + ξd∇ψ(0),

vd = ξd.

or {
ξ′ = v′ − vd∇ψ(0),

ξd = vd,

with c|ξ| ≤ |v| ≤ C|ξ|, we shall obtain

H(z′) = v′ · z′ + vd
1

ρ
ψ1(ρz′).

Since∇ψ1(0) = 0 we arrive at

|J | ≤ C(ρ|v|)−(d−1)/2 ≤ C(ρ|ξ|)−(d−1)/2,

which completes the proof of the Lemma.

3 Proofs of the theorems

Proof of Theorem 1.1. Take r > 0 and consider a covering of Γ by the following family
of balls B = {B(z, 1

5
r) : z ∈ Γ}. From covering lemma of Vitali there exists a subfamily

of disjoint balls B0 = {B(z, 1
5
r) : j = 1, 2, ...,M} ⊂ B so that Γ ⊂

M⋃
j=1

B(zj, r).

Now fix a non negative ϕ ∈ C∞0 (Rd), such that supp(ϕ) ⊂ B(0, 2), and ϕ(x) = 1

for |x| ≤ 1. For r > 0 set ϕr(x) = ϕ(x/r), so that supp(ϕr) ⊂ B(0, 2r), and for
j = 1, 2, ...,M set ϕr,j(x) = ϕr(x − zj), so supp(ϕr,j) ⊂ B(zj, 2r). For j = 1, 2, ...,M

denote Bj := B(zj, 2r) and ϕj =

(
M∑
n=1

ϕr,n(x)

)−1

ϕr,j(x). It is clear that each function

ϕj is defined on a neighborhood of Γ, supp(ϕj) ⊂ Bj , and also
M∑
j=1

ϕj(x) = 1, for x ∈ Γ.
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Observe that from the definition of ϕj follows that for each α ∈ Zd there exists a constant
Cα depending on α and the function ϕ such that for all j = 1, 2, ...,M one has

|Dαϕj(x)| ≤ Cr−|α|, x ∈ Bj. (3.1)

We also note that an easy volume argument shows that each point of Γ can be covered by
at most 11d different balls Bj .

Now fix a small positive number a. Let x ∈ D and consider a number 0 < ρ ≤ c0d(x),
where c0 is a small constant, and d(x) = dist(x,Γ). We then take r = aρ, so ϕj has
support in a ball Bj of radius 2aρ. From (3.1) we get

|Dαϕj(x)| ≤ Cα
1

(aρ)|α|
= Cα

1

ρ|α|
, x ∈ Bj.

We have

uε(x)− u0(x) =

∫
Γ

P (x, y)[gε(y)− g]

(
M∑
j=1

ϕj(y)

)
dσ(y) =

M∑
j=1

∫
Γj

P (x, y)[gε(y)− g]ϕj(y)dσ(y),

where Γj = Γ ∩Bj .
After a permutation of coordinates we may assume that there exists a constant b > 0

and a smooth, real-valued function ψ(z′) defined for |z′−z′0| < b, where z′ = (z1, ..., zd−1)

such that
Γj = {(z′, ψ(z′)) : |z′ − z′0| < 10aρ} ∩Bj,

where Bj is a ball of radius 2aρ. We may also assume that suppϕj ⊂ Bj , |Dαψ(z′)| ≤
Cα, and |det( ∂2ψ

∂zi∂zj
)d−1
i,j=1(z′)| ≥ c > 0 for |z′ − z′0| < b. The last condition comes from

the assumption of the surface being uniformly convex.
Letting y(j) ∈ Γj we have∫

Γj

P (x, y)[gε(y)− g]ϕj(y)dσ(y) =
1

|x− y(j)|d−1
Ij,

where
Ij =

∫
Γj

|x− y(j)|d−1P (x, y)[gε(y)− g]ϕj(y)dσ(y).

It follows that

Ij =

∫
|z′−z′

0|<10aρ

|x−y(j)|d−1P (x, (z′, ψ(z′)))[gε(z
′, ψ(z′))−g]ϕj(z

′, ψ(z′))(1+|∇ψ(z′)|2)1/2dz′.
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We now make a change of variable y′ = z′ − z′0 and obtain

Ij =

∫
|y′|<10aρ

|x− y(j)|d−1P (x, (z′0 + y′, ψ(z′0 + y′)))[gε(z
′
0 + y′, ψ(z′0 + y′))− g]

ϕj(z
′
0 + y′, ψ(z′0 + y′))(1 + |∇ψ(z′0 + y′)|2)1/2dy′,

We then set ψ1(y′) = ψ(z′0 + y′) − s0 for |y′| < b, where s0 = ψ(z′0). Hence ψ1(0) = 0

and

Ij =

∫
|y′|<10aρ

|x− y(j)|d−1P (x, (z′0 + y′, s0 + ψ1(y′)))[gε(z
′
0 + y′, s0 + ψ1(y′))− g]

ϕj(z
′
0 + y′, s0 + ψ1(y′))(1 + |∇ψ1(y′)|2)1/2dy′.

We now set y′ = ρz′ and obtain

Ij = ρd−1

∫
|z′|<10a

|x− y(j)|d−1P (x, (z′0 + ρz′, s0 + ψ1(ρz′)))[gε(z
′
0 + ρz′, s0 + ψ1(ρz′))− g]

ϕj(z
′
0 + ρz′, s0 + ψ1(ρz′))(1 + |∇ψ1(ρz′)|2)1/2dz′.

Set a0 = 10a. Since g is 1-periodic and smooth we have g(y) =
∑
m∈Zd

cme
2πim·y. It follows

that

gε(z
′
0 + ρz′, s0 + ψ1(ρz′)) =

∑
m∈Zd

cme
2πi[m

′
ε
·(z′

0+ρz′)+
md
ε

(s0+ψ1(ρz′))] =

∑
m∈Zd

cme
2πi[m

′
ε
·z′

0+
md
ε
s0]e2πi[ ρ

ε
m′·z′+

md
ε
ψ1(ρz′)]

Hence

Ij = ρd−1
∑
m 6=0

cme
2πi[m

′
ε
·z′

0+
md
ε
s0]

∫
|z′|<a0

|x− y(j)|d−1P (x, (z′0 + ρz′, s0 + ψ1(ρz′)))

ϕj(z
′
0 + ρz′, s0 + ψ1(ρz′))(1 + |∇ψ1(ρz′)|2)1/2e2πi( ρ

ε
m′·z′+

md
ε
ψ1(ρz′))dz′ =

ρd−1
∑
m6=0

cme
2πi[m

′
ε
·z′

0+
md
ε
s0]

∫
|z′|<a0

e2πi( ρ
ε
m′·z′+

md
ε
ψ1(ρz′))u(z′)dz′,

where

u(z′) = |x−y(j)|d−1P (x, (z′0+ρz′, s0+ψ1(ρz′)))ϕj(z
′
0+ρz′, s0+ψ1(ρz′))(1+|∇ψ1(ρz′)|2)1/2,

and m′ = (m1, ...,md−1). It follows from the condition ρ ≤ c0d(x) and Lemma 2.1 that
for each α ∈ Zd

+ there exists a constant Cα such that |Dαu(z′)| ≤ Cα, for |z′| < a0.
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Now by setting ξ = ρ
ε
m, ξ′ = ρ

ε
m′, and ξd = ρ

ε
md we obtain

Ij = ρd−1
∑
m6=0

cme
2πi[m

′
ε
·z′

0+
md
ε
s0]

∫
|z′|<a0

e2πi(ξ′·z′+ξd
1
ρ
ψ1(ρz′))u(z′)dz′ :=

ρd−1
∑
m 6=0

cme
2πi[m

′
ε
·z′

0+
md
ε
s0]Jj,

where Jj denotes the last integral in the sum above. From Lemma 2.4 we get

|Ij| ≤ Cρd−1
∑
m6=0

|cm|(ρ|ξ|)−(d−1)/2 = Cε(d−1)/2
∑
m 6=0

|cm|
1

||m||(d−1)/2
≤ Cε(d−1)/2,

where the last sum converges by virtue of Lemma 2.3. We therefore get∣∣∣∣∣∣∣
∫
Γj

P (x, y)[gε(y)− g]ϕj(y)dσ(y)

∣∣∣∣∣∣∣ ≤ C
1

|x− y(j)|d−1
ε(d−1)/2.

Hence

|uε(x)− u0(x)| ≤ Cε(d−1)/2

M∑
j=1

1

|x− y(j)|d−1
≤

Cε(d−1)/2ρ−(d−1)

M∑
j=1

|Γj|
|x− y(j)|d−1

≤ Cε(d−1)/2ρ−(d−1)

∫
Γ

1

|x− y|d−1
dσ(y) ≤

Cε(d−1)/2ρ−(d−1)

∫
Γ

1

|x− y|d−1

|x− y|δ

d(x)δ
dσ(y) ≤ Cε(d−1)/2ρ−(d−1) 1

d(x)δ
,

where δ > 0 is a small number. Here we used the fact, noted in the beginning of the proof,
that for any y ∈ Γ the number of j for which y ∈ Γj is bounded by 11d.

Now we take ρ = c0d(x) where c0 > 0 is a small constant, and get

|uε(x)− u0(x)| ≤ Cε(d−1)/2 1

d(x)d−1+δ
, x ∈ D,

where δ > 0 is arbitrarily small.
Theorem 1.1 is proved.

Proof of Theorem 1.2. First we consider the case p = 1. Using Theorem 1.1 we get

||uε − u0||L1(D) ≤ C

ε1/2∫
0

1dt+ C

1∫
ε1/2

ε(d−1)/2t1−d−δdt ≤
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Cε1/2 + Cε(d−1)/2ε1/2(2−d−δ) = Cε1/2−δ/2. (3.2)

Now assume 1 < p <∞. From (3.2) and using the boundedness of uε and u0 we get

||uε − u0||Lp(D) =

∫
D

|uε(x)− u0(x)||uε(x)− u0(x)|p−1dx

1/p

≤

C

∫
D

|uε(x)− u0(x)|dx

1/p

≤ C(ε1/2−δ/2)1/p =

Cε1/2p−δ/2p.

Theorem 1.2 is proved. �

Acknowledgments. H. Aleksanyan thanks Göran Gustafsson foundation for visiting appointment to KTH.
H. Shahgholian was partially supported by Swedish Research Council.

References
[ADN1] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solu-

tions of elliptic partial differential equations satisfying general boundary conditions.
I. Comm. Pure Appl. Math. 12 623–727 (1959)

[ADN2] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solu-
tions of elliptic partial differential equations satisfying general boundary conditions.
II. Comm. Pure Appl. Math. 17 35–92 (1964)

[AA] Allaire, G., Amar, M.: Boundary layer tails in periodic homogenization. ESAIM
Control Optim. Calc. Var. 4, 209–243 (1999) (electronic)

[AL] Avellaneda, M., Lin F.: Compactness methods in the theory of homogenization.
Comm. Pure Appl. Math., 40 no. 6, 803–847 (1987)

[BLP] Bensoussan, A., Lions, J.L., Papanicolaou G.: Asymptotic analysis for periodic
structures. Studies in Mathematics and its Applications. North-Holland (1978)

[CPS] Chechkin, G., Piatnitski, A., Shamaev, A.: Homogenization. Translations of Math-
ematical Monographs 234. American Mathematical Society, Providence, RI, 2007.
Methods and applications, Translated from the 2007 Russian original by Tamara
Rozhkovskaya.

[CD] Cioranescu, D., Donato, P.: An introduction to homogenization. Oxford Lecture Se-
ries in Mathematics and its Applications 17. The Clarendon Press Oxford University
Press, New York (1999)



14 Hayk Aleksanyan, Henrik Shahgholian, Per Sjölin

[GM] Gérard-Varet, D., Masmoudi N.: Homogenization and boundary layer, Acta Math
209, no. 1, 133-178 (2012)
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