
ON THE GREEDY ALGORITHM BY THE HAAR SYSTEM

HAYK ALEKSANYAN

Abstract. The paper studies uniform and almost everywhere convergence of the greedy
algorithm with respect to Haar system. We obtain necessary and sufficient conditions
for renormalization of the Haar system that guarantee uniform convergence for functions
from C[0, 1] and almost everywhere convergence for functions from L1[0, 1].

1. Introduction

Let Φ = {ϕn}∞n=1 be a basis in Banach space X satisfying infn ||ϕn||X > 0. Then any
element f ∈ X can be uniquely represented by a series with respect to the system Φ which
converges to f in the norm of X:

f =
∞∑
n=1

cn(f)ϕn,

where cn(f), n = 1, 2, ... are the coefficients of the expansion and limn→∞ cn(f) = 0. For
N ∈ N let ΛN ⊂ N be so that

min
k∈ΛN

|ck(f)| ≥ max
k/∈ΛN

|ck(f)|.

Then
GN(f) := GN(f,Φ) :=

∑
k∈ΛN

ck(f)ϕk

is said to be N -th greedy approximant of an element f with respect to system Φ, and the
method of approximating f by a sequence GN , N = 1, 2, ... is called greedy approximation.

A basis Φ is called quasi-greedy if there exists a constant C such that for any f ∈ X
one has

||GN(f)||X ≤ C||f ||X, N = 1, 2, ...

In [14] P. Wojtaszczyk proved that a basis is quasi-greedy if and only if

lim
N→∞

||f −GN(f)||X = 0, ∀f ∈ X.

The convergence of greedy algorithm for special systems was studied by many au-
thors. Below is a list of some of the many results obtained for certain classical systems.
Answering a question raised by L. Carleson and R. Coifman, T. Körner [9] constructed
a function from L2(T), and then, in [10], a continuous function possessing almost ev-
erywhere divergent greedy algorithms with respect to trigonometric system. In [13] V.
Temlyakov proved the existence of a function from Lp(T) for all 1 ≤ p < 2, such that the
greedy algorithm in trigonometric system is divergent in measure, and also the existence
of a continuous function with divergent greedy algorithm in Lp norm for any p > 2 again
with respect to trigonometric system. On the other hand S. Konyagin and V. Temlyakov
[7] obtained sufficient conditions for the convergence of the greedy algorithm. Similar
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results concerning convergence and divergence of the greedy algorithm by the classical
Walsh system were obtained by G. Amirkhanyan [1].

An example of a continuous function, which has divergent in measure greedy algorithm
by the Faber-Schauder system is constructed by M. Grigoryan and A. Sargsyan [2].

S. Kostyukovsky and A. Olevskii [8] constructed an orthonormal basis for L2(0, 1),
consisting of uniformly bounded functions, such that for any function from L2(0, 1) the
greedy algorithm with respect to that basis converges almost everywhere. M. Nielsen [11]
constructed a uniformly bounded orthonormal system which is a quasi-greedy basis in
Lp(0, 1) for all 1 < p <∞.

The purpose of this note is to study convergence properties of the greedy algorithm
with respect to Haar system, and in particular, the interplay between the behavior of
the method of approximation and renormalization of the system. Throughout the paper
Γ = {γn}∞n=1 stands for a sequence of decreasing positive numbers. For f ∈ X consider the
Γ-weighted decreasing rearrangement of non-zero coefficients of f , namely let σ : N→ N
be a permutation of the spectrum of f such that

(1.1) |γσ(1)cσ(1)(f)| ≥ |γσ(2)cσ(2)(f)| ≥ ... ≥ |γσ(n)cσ(n)(f)| ≥ ...

and set

(1.2) GN(f,Ψ, σ) :=
N∑
n=1

cσ(n)(f)ϕσ(n), N = 1, 2, ...

Denote by D(f,Ψ,Γ) the set of all rearrangements σ satisfying (1.1). It is easy to see
that (1.2) coincides with the greedy approximant by the renormed system Ψ, namely

(1.3) GN(f,Ψ, σ) := GN

(
f,

{
1

γn
ϕn

})
, N = 1, 2, ...

In [6] S. Konyagin and V. Temlyakov proved that for any normed basis Φ of Banach
space X and for Γ = {2−n}∞n=1 one has

lim
N→∞

||GN(f,Φ,Γ)− f ||X = 0, for any f ∈ X.

Everywhere below Hp := {hn,p}∞n=1 is the Haar system normed in Lp(0, 1), 1 ≤ p ≤ ∞
and Γp := {γn,p}∞n=1 where γn,p = 2−k/p if n = 2k + i, i = 1, 2, ..., 2k.

Remark 1.1. Suppose f ∈ L1(0, 1) and {cn(f)}∞n=1 are the coefficients of the expansion
of f by the system H∞. If f ∈ C[0, 1], then cn(f)→ 0 and the rearrangement σ satisfying
(1.1) exists. But the condition f ∈ L1(0, 1) does not guarantee that cn(f) → 0, i.e. f
and Γ can be such that there is no rearrangement satisfying (1.1). In such a case, the
coefficients are partitioned into the following two parts:

A := {n ∈ N : |cn(f)| ≤ 1} and B := N \ A.

After that the convergence of greedy approximants is understood for the rearrangements
σ, such that

(1.4) |γσ(n)cσ(n)(f)| ≥ |γσ(n+1)cσ(n+1)(f)|, n ∈ A,

and the part B is rearranged in an arbitrary fashion.
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Observe that a rearrangement satisfying (1.4) always exists if Γ tends to zero, and
if it does not tend to zero, then only functions with rearrangements satisfying (1.4) are
considered, and this does not lead to a loss of generality as will be seen from the analysis
below.

Hereinafter, we understand the sets D(f,Φ,Γ) and the approximants (1.2) with regard
to Remark 1.1. The following theorem due to T. Tao [12] is given in a reformulated, but
equivalent form.

Theorem 1.2. The following assertions hold true:

a) if 1 < p <∞ then for any f ∈ Lp(0, 1)

lim
N→∞

GN(f,H∞,Γp)(x) = f(x), a.e. in [0, 1],

b) there exists a function f ∈
⋂

1<p<∞
Lp(0, 1) such that

lim
N→∞

sup |GN(f,H∞,Γ∞)(x)| =∞, for any x ∈ [0, 1].

Note that by (1.2) and (1.3) we have GN(f,H∞,Γp) ≡ GN(f,Hp) for all 1 ≤ p ≤ ∞.
For a sequence Γ = {γn}∞n=1 we set

τ(Γ) = sup
m>n

{
m

n
:
γn
γm
≤ 2

}
.

Example 1.3. For any p > 0 one has τ({n−p}∞n=1) <∞, whereas τ({(lnn)−1}∞n=2) =∞.

Remark 1.4. It is easy to see that if τ(Γ) <∞ then γn → 0. On the other hand merely
decreasing to 0, even at a very high speed, does not guarantee that τ(Γ) < ∞ as can be
seen from the following example. Take any decreasing sequence γn > 0 that approaches to
0. Then it is easy to see that the sequence

Γ =

{{(
1

2
+

1

i

)
γk

}k
i=2

}∞
k=2

is decreasing, tends to 0, but τ(Γ) =∞.

S. Gogyan [3] proved that the system H1 is a quasi-greedy basis in the space L1(0, 1)
if and only if τ(Γ) <∞. The following are the main results of the present note.

Theorem A. Let Γ = {γn}∞n=1 be a fixed sequence of weights. Then

1) if τ(Γ) <∞ then

lim
N→∞

||f −GN(f,H∞,Γ)||C[0,1] = 0

for any f ∈ C[0, 1] and any rearrangement σ ∈ D(f,H∞,Γ),
2) if τ(Γ) =∞, then there exits a function f ∈ C[0, 1] such that

lim sup
N→∞

|GN(f,H∞,Γ)(x)| =∞, a.e. in [0, 1]

for any rearrangement σ ∈ D(f,H∞,Γ).
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Theorem B. For any f ∈ L1(0, 1) and any rearrangement σ ∈ D(f,H∞,Γ) one has
lim
N→∞

GN(f,H∞,Γ)(x) = f(x) a.e. in [0, 1] if and only if τ(Γ) <∞.

Note that the aforementioned theorem of Tao follows from Theorems A and B, since
τ(Γp) <∞ for any 1 < p <∞ and τ(Γ∞) =∞.

2. Notation and Auxiliary Results

Intervals of the form
(
i−1
2k
, i

2k

)
, where i = 1, 2, ..., 2k and i = 0, 1, ... are called dyadic

intervals. For any integer n = 2k + i with k ≥ 0 and 1 ≤ i ≤ 2k we set

∆n = ∆i
k =

(
i− 1

2k
,
i

2k

)
, ∆n =

[
i− 1

2k
,
i

2k

]
,

∆1 = ∆0
0 = (0, 1), ∆0 = [0, 1].

Denote by ∆+
n and ∆−n correspondingly the left and right halves of dyadic intervals:

∆+
n = (∆i

k)
+ =

(
i− 1

2k
,
2i− 1

2k+1

)
= ∆2i−1

k+1 ,

∆−n = (∆i
k)
− =

(
2i− 1

2k+1
,
i

2k

)
= ∆2i

k+1.

We denote the midpoint of the interval ∆n by tn; clearly for n = 2k + i with the usual
convention, we have tn = 2i−1

2k+1 .
By H∞ = {hn}∞n=1 we denote the Haar system normalized in || · ||∞ norm, and for a

function f ∈ L1(0, 1) we denote by cn(f) the n-th coefficient of f with respect to H∞. For
any rearrangement σ ∈ D(f,H∞,Γ) we define the set

ΛN(f) := ΛN(f, σ) := {σ(1), ..., σ(N)}, N = 1, 2, ...

and introduce

G∗N(f, x) := G∗N(f, σ, x) := sup
1≤k≤N

∣∣∣∣∣
N∑
k=1

cσ(k)(f)hσ(k)(x)

∣∣∣∣∣ , x ∈ [0, 1], N = 1, 2, ...,

for the majorant of greedy operators. Also, we set

spf := {n ∈ N : cn(f) 6= 0},
The symbol a � b means a double inequality of the form C1a ≤ b ≤ C2b, where C1, C2 > 0
are absolute constants. Throughout the text by C we denote an absolute constant which
may be different in different formulas.

We recall some well-known facts about Haar system which we will need later.

Lemma 2.1. (see [4], page 79) Let A0 = {(0, 1), ∅}, Aj = {(0, 1), ∅,∆+
n ,∆

−
n : n =

1, 2, ..., j} and let Fj be the family of sets that can be represented as a finite union of
intervals from Aj, j = 0, 1, .... Further, let α(x), x ∈ [0, 1] be a function that takes values
from the set Z+ ∪ {∞} and is such that

ej := {x ∈ (0, 1) : α(x) = j} ∈ Fj, j = 0, 1, ...

Then there exists a sequence {εn}∞n=1 with εn ∈ {0, 1} for all n ∈ N and satisfying

εnhn(x) =

{
hn(x), for n ≤ α(x),

0, for n > α(x),
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for all n ≥ 1 and x ∈ [0, 1] \R2, where R2 = {{i/2k}2k

i=1}∞k=0.
As a consequence, one gets that for any real numbers cn, n = 1, 2, ... the following is

true
α(x)∑
n=1

cnhn(x) =
∞∑
n=1

εncnhn(x), x ∈ (0, 1) \R2,

with the convention that
0∑

n=1

≡ 0.

Lemma 2.2. (see [4], page 93) For any polynomial of the form

N∑
n=M

anhn(x), 1 < M < N,

there is a rearrangement {σ(n)}Nn=M of the numbers M,M + 1, ..., N such that

max
M≤p≤q≤N

∣∣∣∣∣
q∑

n=p

aσ(n)hσ(n)(x)

∣∣∣∣∣ ≥ 1

4

q∑
n=p

|anhn(x)|, x ∈ [0, 1].

Remark 2.3. It follows from the proof of Lemma 2.2, that if the all coefficients an are
of the same sign, then the rearrangement σ can be chosen from the condition

(2.1) 0 < tσ(M) < tσ(M+1) < ... < tσ(N) < 1,

where tn is the midpoint of the interval ∆n and the constant 1/4 can be replaced by 1/2.

We will also need the following result.

Theorem 2.4. (see [4], page 87) The Haar series
∞∑
n=1

anhn(x)

converges a.e. in a set E ⊂ (0, 1), where µ(E) > 0, if and only if
∞∑
n=1

a2
nh

2
n(x) <∞, a.e. in E.

Let us prove the following Lemma.

Lemma 2.5. Let Γ = {γn}∞n=1 be a decreasing sequence of positive numbers, and let
positive integers m, p > 1 and A < B be such that

(2.2) [2p+1, 2p+m
7+1] ⊂ [A,B] and

γA
γB
≤ 2.

Then, for any sequence {ξi}∞i=1, |ξi| ≤ m−8, i = 1, 2, ..., there exists a function f ∈ C[0, 1]

and a set L ⊂ spf such that

1. ||f ||C[0,1] ≤ 3,

2. cj(f) = 0 for any j ≤ p,

3. 1
4m4 < cj(f) < 4

m4 for any i, j ∈ L,
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4. if f := f +
∑
n∈L

ξnhn and σ ∈ D(f,H∞,Γ) , then the inclusion Λq(f) ⊃ L implies

the inequality

µ

{
x ∈ [0, 1] : G∗q(f, x) ≥ 1

12
m3

}
≥ 1− C

m
.

Proof. Consider the following polynomial

(2.3) P (x) =
1

m4

p+m7∑
k=p+1

2k∑
i=1

τ ikh
i
k(x),

where τ ik ∈ [1/3, 3] and will be chosen in a moment. Obviously,

(2.4)
1

m4

p+m7∑
k=p+1

2k∑
i=1

τ ik|hik(x)| � m3 a.e. in [0, 1] and ||P ||2 �
1√
m
,

independently of the choice of the numbers {τ ik}. Assume that spP = {Mi}νi=1, where
M1 < M2 < ... < Mν and σ is a rearrangement of the set spP , satisfying (2.1). We choose
numbers {τ ik} as follows

(2.5) τMi
=
γσ−1(Mi)

γMi

, i = 1, 2, ..., ν.

Next, in view of (2.2) and monotonicity of Γ we have 1/2 ≤ τn ≤ 2 for any n ∈ spP ,
and due to the construction of rearrangement σ we get that σ ∈ D(P,H∞,Γ). Since
1/3 < τn < 3 for n ∈ spP , by slightly perturbing the numbers τn we can reach the state
that all the numbers |γncn(P )| are pairwise different for n ∈ spP , and τn ∈ [1/3, 3] and
the mentioned properties of the polynomial P and the rearrangement σ are preserved.
Therefore, without loss of generality we will assume that #D(P,H∞,Γ) = 1.

Consider the function

α(x) =

∞, if sup
N :x∈∆N

||SN(P )||C(∆N ) ≤ 1,

inf{N : ||SN+1(P )||C(∆N+1) > 1, x ∈ ∆N+1}, otherwise ,

where SN is the N -th partial sum operator with respect to Haar system. Let ej := {x ∈
[0, 1] : α(x) = j}, j = 0, 1, 2, ... Then, clearly ej = ∆j+1, j = 0, 1, ... if ej 6= ∅, i.e.
the function α(x) satisfies the conditions of Lemma 2.1. Hence, there exists a sequence
εn ∈ {0, 1}, n = 1, 2, ... such that

(2.6) Q(x) :=

α(x)∑
n=1

cn(P )hn(x) =
∞∑
n=1

εncn(P )hn(x), x ∈ [0, 1] \R2.

It is clear that Q is a polynomial by Haar system and

||Q||C[0,1] ≤ 1 and ||Q||2 ≤ C
1√
m
.
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Set

E := {x ∈ [0, 1] : α(x) =∞}, S∗(P, x) := sup
1≤N<∞

∣∣∣∣∣
N∑
n=1

cn(P )hn(x)

∣∣∣∣∣ , x ∈ [0, 1],

and recall the following estimate (see [4], p. 88)

(2.7) ||S∗(f)||p � ||f ||p, 1 < p <∞.

We have {x ∈ [0, 1] : α(x) < ∞} =
∞⋃
j=0

ej and ej = ∆j+1 when ej 6= ∅. Then observe

that the function Sj+1(P, x) is constant on the intervals ∆+
j+1 and ∆−j+1 and hence either

∆+
j+1 or ∆−j+1 is contained in the set {x ∈ [0, 1] : S∗(P, x) > 1}. Since the sets ej do not

overlap, we obtain

(2.8) µ{x ∈ [0, 1] : α(x) <∞} ≤ 2µ{x ∈ [0, 1] : S∗(P, x) > 1}.
By (2.8), Chebyshev’s inequality and (2.7) we get

µ{x ∈ [0, 1] : α(x) <∞} ≤ 2||S∗(P, x)||22 ≤ C||P ||22 ≤
C

m
.

Thus,

(2.9) µ(E) ≥ 1− C

m
,

and according to (2.4) we obtain

(2.10)
∞∑
n=1

|cn(Q)hn(x)| =
∞∑
n=1

|cn(P )hn(x)| � m3, x ∈ E.

We set L := spQ and Q(x) :=
∑
n∈L

(cn(Q)ξn)hn(x) and suppose that 0 < x1 < x2 <

... < xr < 1 are the all discontinuity points of the polynomial Q. We fix an integer
k > p+m7 + 1 large enough to ensure

0 < x1 −
1

2k+1
< xr +

1

2k+1
< 1

and

xi +
1

2k+1
< xi+1 −

1

2k+1
, i = 1, 2, ..., r − 1.

We now introduce a function f continuous on [0, 1] as follows

f(x) =


Q(x), if [0, 1] \

(
xi − 3

2k+3 , xi + 3
2k+3

)
and x = xi ± j

2k+3 , j = 1, 3 ,
3
2
Q(xi ± 0), if x = xi ± 2

2k+3 ,

0, if x = xi ,

where 1 ≤ i ≤ r and in the remaining intervals f is extended as linear and continuous
function. Clearly

(2.11) cn(f) = cn(Q), n ≤ 2k.

Let us prove that f and L satisfy the requirements of the Lemma. By construction we
have f ∈ C[0, 1] and ||f ||C[0,1] ≤ 3, which is the first assertion of the Lemma. The second
claim of the Lemma follows easily from (2.3), (2.6) and (2.11). The third assertion is due
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to the construction of f and the fact that |ξn| ≤ m−8, for all n = 1, 2, .... For the forth
one define f := f +

∑
n∈L

ξnhn. Then in view of (2.3), (2.6) and (2.11) one has

(2.12) cn(f) = cn(Q) = cn(P ) for all n ∈ L.
As #D(P,H∞,Γ) = 1 from (2.5) and (2.12) we get that for any σ ∈ D(f,H∞,Γ) the set
spP is rearranged according to (2.1). Combining this with (2.9), (2.10) and Lemma 2.2
we obtain the forth assertion of the current Lemma, thus finishing the proof.

�

3. Proofs of the Theorems

Proof of Theorem A. We start with the first statement of the theorem. Assume that
τ(Γ) <∞, f ∈ C[0, 1] and ε > 0 is fixed. Denote

Tε(f)(x) :=
∑

n:|cn(f)γn|>ε

cn(f)hn(x), x ∈ [0, 1],

and
N(ε) = min{N ∈ N : |cn(f)γn| ≤ ε, ∀n ≥ N}.

Then clearly
{n ∈ N : |cn(f)γn| > ε} ⊂ {1, 2, ..., N(ε)},

and

(3.1)
ε

γN(ε)

≤ |cN(ε)(f)| → 0 as ε→ 0.

Also, it is not hard to see that

(3.2) ||SN(ε)(f)− Tε(f)||C[0,1] =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

n≤N(ε)
|cn(f)γn|≤ε

cn(f)hn(x)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
C[0,1]

≤ ε

[log2N(ε)]−1∑
k=0

1

γnk
+

ε

γN(ε)

,

where nk = 2k+1. If l0 := [log2 τ(Γ)] + 1, then
nk+l0

nk
> τ, k = 0, 1, ..., [log2N(ε)]− l0 − 1,

and hence

(3.3)
γnk
γnk+l0

> 2, k = 0, 1, ..., [log2N(ε)]− l0 − 1.

By (3.3) we obtain

(3.4)

[log2N(ε)]−1∑
k=0

1

γnk
≤

l0−1∑
r=0

∑
k≡r(mod l0)

1

γnk
≤

l0−1∑
r=0

(
1

2ir
+

1

2ir−1
+ ...+ 1

)
1

γN(ε)

≤ C

γN(ε)

,

for some integers ir, r = 0, 1, ..., l0 − 1. By (3.2), (3.4) and (3.1) we get

(3.5) ||SN(ε)(f)− Tε(f)||C[0,1] → 0 as ε→ 0.

As the partial sums SN(f) converge uniformly to f on [0, 1], from (3.5) we have

(3.6) lim
ε→0
||f − Tε(f)||C[0,1] = 0.
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Observe that, if the set D(f,H∞,Γ) contains only one element then for any N ∈ N there
exists some ε = ε(N) > 0 for which GN(f) = Tε(f), implying

lim
N→∞

||f −GN(f)||C[0,1] = 0.

In the case when #D(f,H∞,Γ) > 1 we set

(3.7) Ω0 = ∅, Ωn = {k ∈ N \ (Ω1 ∪ ... ∪ Ωn−1) : |γkck(f)| = |γncn(f)|}, n = 1, 2, ...,

and if Ωn 6= ∅ we set ωn := max Ωn. Note that Ωn-s are exactly the sets due to which
we get non uniqueness of the greedy rearrangement. To finish the proof it is enough to
obtain a uniform control over contributions of Ω-s. Now, if #Ωn > 1 then by the same
argument as in the proof of the estimate (3.4) we obtain

(3.8)
∑
k∈Ωn

|ck(f)hk(x)| = |γωncωn(f)|
∑
k∈Ωn

1

γk
|hk(x)| ≤

|γωncωn(f)|
ωn∑
k=1

1

γk
|hk(x)| ≤ C|cωn(f)|, x ∈ [0, 1].

The last expression combined with (3.6) completes the proof of the first statement of
Theorem A.

We now proceed to the proof of the second part of Theorem A. If τ(Γ) =∞ then for
any positive integers k and m there exists indices B > A > m such that

(3.9)
B

A
> k and

γA
γB
≤ 2.

By means of induction over n = 1, 2, ... we construct a sequence of functions fn ∈ C[0, 1],
sets of indices Ln, indices qn, along with auxiliary indices pn, An, Bn and sequences {ξni }∞i=1

satisfying the following conditions:

(a) ||fn||C[0,1] ≤ 3/n2,

(b) maxLn < minLn+1 and qn < qn+1,

(c) cj(fn) = 0 for j < minLn,

(d) if Fn =
n∑
k=1

fk, then max
j∈Lk+1

|γjcj(Fn)| < min
j∈Lk
|γjcj(Fn)| for k = 1, 2, ..., n− 1,

(e) µ
{
x ∈ [0, 1] : G∗qn(Fn, σ, x) ≥ 1

12
n
}
≥ 1 − C

n
for any σ ∈ D(Fn,H∞,Γ), provided

that qn is chosen so that Λqn(Fn, σ) ⊃ Ln.

Start with n = 1, set m1 = 2n and choose integers B1 > A1 > 1 such that

(3.10)
B1

A1

> 2m
7
1+3 and

γA1

γB1

≤ 2.

The possibility of such a choice follows from (3.9). We then take p1 = [log2A1] + 1,
{ξ1

i }∞i=1 = (0, 0, ...) and observe that in view of the definition of p1 and condition (3.10)

we have [2p1 , 2p1+m7
1+2] ⊂ [A1, B1].

We now apply Lemma 2.5 with initial conditions m1, p1, A1, B1 and {ξ1
i }∞i=1 and let f1

and L1 be correspondingly the continuous function and the index set provided by Lemma
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2.5. Set F1 := f1 and choose an integer q1 so that Λq1(F1) ⊃ L1. The conditions (a)-(e)
are trivially satisfied.

Now assume that for n ∈ N we have constructed the quantities fk, Fk, Lk, pk, qk, Ak,
Bk and {ξki }∞i=1 satisfying conditions (a)-(e) for all k = 1, 2, ..., n, and set mn+1 = 2(n+1).
Since ck(Fn) → 0 as k → ∞ there exists an integer K0 > qn such that for any k ≥ K0,
|ck(Fn)| < m−10

n+1. Next, we fix some integers Bn+1 > An+1 such that

(3.11) An+1 > max{Bn, 2
K0+2}, Bn+1

An+1

> 2m
7
n+1+3 and

γAn+1

γBn+1

≤ 2.

Taking pn+1 = [log2An+1]+1, we get by (3.11) that [2pn+1, 2m
7
n+1+pn+1+1] ⊂ [An+1, Bn+1].

Next we choose a sequence {ξn+1
i }∞i=1 as follows

ξn+1
i =

{
0, for i < pn+1,

m2
n+1ci(Fn), for i ≥ pn+1.

Now let gn+1 be a continuous function on [0, 1] and Ln+1 be an index set satisfying
Lemma 2.5 with the initial conditions mn+1, pn+1, An+1, Bn+1 and {ξn+1

i }∞i=1. Set fn+1 :=
gn+1/(n + 1)2, Fn+1 := Fn + fn+1 and choose an index qn+1 so that Λqn+1(Fn+1) ⊃ Ln+1.
It is then easy to see that the conditions (a)-(e) are satisfied.

Let us now show that the function f :=
∞∑
n=1

fn satisfies the second statement of Theorem

A. Clearly f ∈ C[0, 1] by (a). Next, observe that for any rearrangement σ ∈ D(f,H∞,Γ)
by the conditions (b)-(d) we have that the quantities |cn(f)γn| are arranged in decreasing
order in any block Ln, moreover for any m > k the quantities |cn(f)γn| of the block Lk are
strictly larger the corresponding quantities of the block Lm. Consequently, by choosing
indices q′n so that Λq′n(f, σ) ⊃ Λn, n = 1, 2, ... by (e) we obtain

µ

{
x ∈ [0, 1] : G∗q′n(f, σ, x) ≥ 1

12
n

}
≥ 1− C

n
.

This last inequality means that GN(f, σ, x) diverges to +∞, finishing the proof of the
Theorem.

Proof of Theorem B. The necessity obviously follows from the second statement of
Theorem A, we now proceed to the proof of sufficiency. Recall that the condition τ(Γ) <
∞ implies that γn ↘ 0, and if τ(Γ) < ∞ then for f ∈ L1(0, 1) the sets D(f,H∞,Γ) are
understood in accordance with Remark 1.1.

Observe that the condition f ∈ L1(0, 1) does not necessarily imply a decay of the
coefficients of f , and hence in this situation we can not apply the arguments of Theorem
A directly. To overcome this obstruction we set

A0 = ∅, An =

{
k ∈ N \ (A1 ∪ ... ∪ An−1) : |ck(f)| ≥ 1

n

}
, n = 1, 2, ...,

and note that only the infinite sets An are of interest. Denote

ι(n) =

{
0, if #An <∞,
n, if #An =∞,



ON THE GREEDY ALGORITHM BY THE HAAR SYSTEM 11

clearly for any n ∈ N the set Aι(n) is either empty or a set of infinite cardinality. Applying
Theorem 2.4 and in view of the fact that Fourier-Haar series of f converge to it pointwise
a.e., we obtain∑

k∈Aι(n)

|ck(f)hk(x)| ≤ n2
∑

k∈Aι(n)

|ck(f)|2|hk(x)|2 <∞ a.e., n = 1, 2, ...,

that is we have absolute convergence in the blocks Aι(n). We now fix some δ > 0 and
assume that an integer N0 ∈ N is chosen so that |ck(f)| < δ for any k ∈ Aι(n) and n ≥ N0.
We then set B := N \ (Aι(1) ∪ ... ∪ Aι(N0)) and

N(ε) := min{N ∈ B : |cn(f)γn| ≤ ε, ∀n > N, n ∈ B}, ε > 0.

Obviously

{n ∈ B : |cn(f)γn| > ε} ⊂ {1, 2, ..., N(ε)},
and

ε

γN(ε)

≤ |cN(ε)| ≤ δ.

We split both sums Tε(f) and SN(ε)(f) in two components as follows:

Tε(f) =
∑

n∈B: |cn(f)γn|>ε

cn(f)hn + Σ1,

SN(ε)(f) =

N(ε)∑
n∈B, n=1

cn(f)hn + Σ2.

Then

|Tε(f)− SN(ε)(f)| ≤ |Σ1 − Σ2|+

∣∣∣∣∣∣
∑

n∈B: |cn(f)γn|>ε

cn(f)hn −
N(ε)∑

n∈B, n=1

cn(f)hn

∣∣∣∣∣∣ .
Taking into account the absolute convergence in the blocks Aι(n) and that N0 is fixed, we
get that the first summand in the right hand side of the last inequality tends to zero a.e.
as ε→ 0. As in the proof of the first statement of Theorem A on can show that the second
summand in the inequality is less than a constant times |cN(ε)(f)|. Since |cN(ε)(f)| ≤ δ
with δ > 0 arbitrary small, we obtain that Tε(f)(x) converges to f(x) a.e. as ε→ 0.

As in the proof of the convergence in Theorem A, we note that if for the function f there
is only one decreasing rearrangement, then for each N ∈ N there exists some ε = ε(N) > 0
satisfying GN(f) = Tε(f), which clearly implies a.e. convergence of GN(f)(x) to f(x).
In the case when #D(f,H∞,Γ) > 1 we fix m ∈ N and denote Bm := Aι(1) ∪ ... ∪ Aι(m),
gm := f −

∑
n∈Bm

cn(f)hn(x), and for n = 0, 1, ... define Ωn(gm) in accordance with (3.7).

We have absolute convergence on the blocks Aι(n), and hence on each Bm. Also note that
non uniqueness of decreasing rearrangement is due to the sets Ωn(gm), however using the
same argument as we had for proving (3.8), it is easy to see that

lim
m→∞

lim sup
n→∞

∑
k∈Ωn(gm)

|ck(gm)hk(x)| = 0, x ∈ [0, 1].

This last expression together with a.e. convergence of thresholds Tε(f)(x) to f(x) finishes
the proof of Theorem B.
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