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ON GREEDY ALGORITHM BY RENORMED
FRANKLIN SYSTEM
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Abstract. We characterize the all weighted greedy algorithms
with respect to Franklin system which converge uniformly for con-
tinuous functions and almost everywhere for integrable functions.
In case, when the algorithm fails to satisfy our classification crite-
ria, we construct a continuous function for which the correspond-
ing approximation diverges unboundedly almost everywhere. Some
applications to wavelet systems are also discussed.
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1. Introduction

Let X be a Banach space and Ψ = {ψn}∞n=1 be a basis in X with
inf
n
||ψn|| > 0. For any f ∈ X one has the expansion

f =
∞∑
n=1

cn(f)ψn,

where {cn(f)} are uniquely determined by f and lim
n→∞

cn(f) = 0. Let

ΛN be a set of integers of cardinality N with

min
k∈ΛN

|ck(f)| ≥ max
k/∈ΛN

|ck(f)|, N = 1, 2, ...

The operator

GN(f) := GN(f,Ψ) :=
∑
k∈ΛN

ck(f)ψk,

is calledN -th greedy approximant of f by the system Ψ and the method
of approximation of f by GN(f) is called greedy algorithm.

A basis Ψ is called quasi-greedy, if there exists a constant C such
that for any f

||GN(f,Ψ)|| ≤ C||f ||, N = 1, 2, ...
273



274 HAYK ALEKSANYAN

P. Wojtaszczyk [24] proved that a basis Ψ is quasi-greedy if and only
if for any f the greedy algorithm converges to f , that is

lim
N→∞

||f −GN(f,Ψ)|| = 0.

Convergence of greedy algorithm for special systems was studied by
many authors. T.W. Körner answering a question raised by Carleson
and Coifman constructed in [17] a function from L2 and then in [18] a
continuous function for which the greedy algorithm by the trigonomet-
ric system diverges almost everywhere.

For trigonometric system V.Temlyakov [23] proved existence of a
function from Lp, 1 ≤ p < 2 whose greedy algorithm diverges in
measure, and existence of a continuous function whose greedy algo-
rithm does not converge in Lp, p > 2. On the other hand S. Konyagin
and V. Temlyakov [16] obtained sufficient conditions for convergence
of greedy algorithm. Similar results concerning convergence and diver-
gence of greedy algorithm by the Walsh system were obtained by G.
Amirkhanyan (see [2]).

M. Grigoryan and A. Sargsyan [11] constructed a continuous function
for which the greedy algorithm by the Faber-Schauder system does not
converge in measure.

For orthonormal Franklin system and wavelet systems with the rate
of decay C

(1+|x|)2+ε , for some ε > 0 G. Gevorkyan and A. Stepanyan

[9] constructed a function from
⋂

1≤p<∞
Lp(R) whose greedy algorithm

diverges almost everywhere.
There are some positive results in this direction. For instance S.

Kostyukovsky and A. Olevskii [20] constructed an orthonormal basis
for L2(0, 1) consisting of uniformly bounded functions such that the
greedy algorithm for each f ∈ L2(0, 1) by that system converges almost
everywhere, and in [21] Nielsen constructed an orthonormal system of
uniformly bounded functions which is a quasi-greedy basis in Lp(0, 1)
for all 1 < p <∞.

For rapidly decreasing one-dimensional wavelet systems T. Tao [22]
proved that the wavelet expansion of any f ∈ Lp(R), 1 < p < ∞ con-
verges almost everywhere under the wavelet projection, hard sampling
and soft sampling summation methods.

Let Γ = {γn}∞n=0 be a decreasing sequence of positive numbers. For
f ∈ X we consider the decreasing rearrangement of absolute values of
non-vanishing coefficients of f with the weight γn:

(1.1) |γσ(1)cσ(1)(f)| ≥ |γσ(2)cσ(2)(f)| ≥ ... ≥ |γσ(n)cσ(n)(f)| ≥ ...,
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and define the weighted greedy approximant of f as follows:

(1.2) GN(f,Ψ,Γ, σ) := GN(f,Ψ,Γ) :=
N∑
n=1

cσ(n)(f)ψσ(n), N = 1, 2, ...

Such a weighted greedy approximation was considered in [10] (see
also [13]). We denote the set of rearrangements satisfying (1.1) by
D(f,Ψ,Γ). One can see that (1.2) coincides with the greedy approxi-
mants by the renormed system Ψ:

(1.3) GN(f,Ψ,Γ) = GN

(
f,

{
1

γn
ψn

})
.

In [15] S. Konyagin and V. Temlyakov proved that if Ψ = {ψn}∞n=1 is a
normed basis in a Banach space X, Γ = {2−n}∞n=1, then for any f ∈ X

lim
N→∞

||f −GN(f,Ψ,Γ)||X = 0.

We denote by H∞ = {hn}∞n=1 the Haar system and by F∞ = {f̃n}∞n=0

the Franklin system both normed in || · ||∞ norm. Let Ψ be either H∞
or F∞, f ∈ L1(0, 1) and cn(f) be the n-th Fourier coefficient of f by
the system Ψ. We denote

spf = {n ≥ 0 : cn(f) 6= 0}.

Remark 1.1. If f ∈ C[0, 1] then cn(f)→ 0 and the definition (1.1) is
correct, but the condition f ∈ L1(0, 1) does not imply that coefficients
tend to 0, so depending on Γ and f the set D(f,Ψ,Γ) can be empty.
In this case for f ∈ L1(0, 1) we split spf into two parts

A := {n ∈ spf : |cn(f)| ≤ 1}, B := spf \ A
and consider the rearrangements of non-vanishing coefficients for which

(1.4) |cσ(n)(f)γσ(n)| ↘ on A

and the second part can be rearranged arbitrarily. The set D(f,Ψ,Γ)
and convergence of the approximants (1.2) are considered in this sense.

Note that in the case γn → 0, the rearrangement satisfying (1.4) al-
ways exists. When γn does not tend to zero, we consider only functions
for which the rearrangement satisfying (1.4) exists. This, as we will see
later, does not lose the generality.

Let Hp = {hn,p}∞n=1 be the Haar system normed in || · ||p norm and

let Γp = {γn,p}∞n=1, where γn,p = 2−
k
p , if n = 2k + i, i = 1, 2, ..., 2k,

1 ≤ p ≤ ∞. We state a theorem of T. Tao in a slightly different but
equivalent form.
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Theorem (T. Tao, [22]). a) If 1 < p <∞ then for each f ∈ Lp(0, 1)

lim
N→∞

GN(f,H∞,Γp) = f(x), a.e. on [0, 1].

b) There exists F ∈
⋂

1<p<∞
Lp(0, 1) such that

lim
N→∞

sup |GN(F,H∞,Γ∞)(x)| = +∞, x ∈ [0, 1].

It is easy to see that GN(f,H∞,Γp) ≡ GN(f,Hp), 1 ≤ p ≤ ∞,
hence this theorem implies that if the Haar functions are normed in
|| · ||p norm then the approximants (1.2) converges a.e. in the case
1 < p < ∞ and when p = ∞ there exists an integrable function with
everywhere divergent greedy algorithm.

For sequence Γ = {γn}∞n=0 we denote

(1.5) τ(Γ) = sup
m>n>0

{
m

n
:
γn
γm
≤ 2

}
.

Remark 1.2. If p > 0 then τ({n−p}∞n=1) < +∞, while τ({(lnn)−1}∞n=2) =
+∞.

Remark 1.3. The condition τ(Γ) < +∞ implies γn → 0. On the
other hand if

Γ̃ = {{(1

2
+

1

i
)γnk}ki=2}∞k=2, where n2 < n3 < ...

then clearly τ(Γ̃) = +∞. Besides, if the sequence nk, k = 2, 3, ... tends

to∞ sufficiently fast, then Γ̃ is monotone and tends to 0 with arbitrary
given rate.

For the Haar system we also have the following
Theorem(S. Gogyan, [10]). For each f ∈ L1(0, 1)

lim
N→∞

||f −GN(f,H1,Γ)||1 = 0

if and only if τ(Γ) < +∞.
In the present paper we prove the following theorems.

Theorem 1.4. The following assertions hold:
1). If τ(Γ) < +∞, then lim

N→∞
||f − GN(f,F∞,Γ)||C = 0, for all

f ∈ C[0, 1] and σ ∈ D(f,F∞,Γ).
2). If τ(Γ) = +∞, then there exists f ∈ C[0, 1] such that #D(f,F∞,Γ) =

1 and GN(f)(x) diverges a.e. on [0, 1].

Theorem 1.5. lim
N→∞

GN(f,F∞,Γ)(x) = f(x) a.e. on [0, 1] for all f ∈
L1[0, 1] and all σ ∈ D(f,F∞,Γ) if and only if τ(Γ) < +∞.
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Remark 1.6. Analogues of Theorems 1.4 and 1.5 for Haar system
were proved in [1]. By a different approach and in different terms T.W.
Körner [19] proved an analogue of Theorem 1.4 for Haar system when
the normalizing coefficients are constant in the blocks of Haar system.

From Theorems 1.4 and 1.5 we get an analogue of the result of T.
Tao for Franklin system.

2. Definitions and auxiliary results. Uniform
convergence

Let

F = {fn}∞n=0 = {{f ik}2k

i=1}∞k=0 ∪ {f 0
0}, where x ∈ [0, 1]

be the orthonormal Franklin system (see [12], p.197). It is known (see
[12], p. 199) that the Franklin system is a basis in C[0, 1] and in Lp[0, 1]
for 1 ≤ p < ∞ and an unconditional basis in Lp[0, 1] for 1 < p < ∞
(see [12], p. 214). Also Fourier-Franklin series of f ∈ L1[0, 1] converges
to f a.e. in [0, 1] (see [3] and [4]).

For n = 2µ + ν, where µ ≥ 0, 1 ≤ ν ≤ 2µ we denote

sn,i =

{
i

2µ+1 , 0 ≤ i ≤ 2ν,
i−ν
2µ
, 2ν < i ≤ n .

It is known that fn is continuous on [0, 1] and linear on the inter-

vals [sn,i−1, sn,i], hence it is uniquely defined by values a
(n)
i = fn(sn,i).

Besides fn attains its minimum and maximum values on the interval
[sn,2ν−2, sn,2ν ], called a peak interval of fn and denoted by {n} (see [5]).

In the case 2µ + 1 < n < 2µ+1 the following estimates are true (see
[5] and [8]):

(2.1) −97

48
a

(n)
2ν < a

(n)
2ν−1 < −

95

42
a

(n)
2ν ,

(2.2) −107

66
a

(n)
2ν−2 < a

(n)
2ν−1 < −

49

30
a

(n)
2ν−2,

(2.3)

√
2

3
2
µ
2 ≤ ||fn||∞ = a

(n)
2ν−1 ≤ 2

µ
2

+1,
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(2.4)
1

4
|a(n)
i+1| ≤ |a

(n)
i | ≤

2

7
|a(n)
i+1|, 1 ≤ i ≤ 2ν − 3,

(2.5)
1

4
|a(n)
i−1| ≤ |a

(n)
i | ≤

2

7
|a(n)
i−1|, 2ν + 1 ≤ i ≤ n− 1.

For f ∈ L1[0, 1] let cn(f) = ||fn||2∞
1∫
0

f(x)f̃n(x)dx be the n-th coef-

ficient of Fourier-Franklin series of f by the system F∞, n = 0, 1, ...
.

For n = 2k + i, 1 ≤ i ≤ 2k we denote [n] = k and for an index set
A = {n1, ..., nk} ⊂ N denote [A] = {[n1], ..., [nk]}.

The interval of the form
(
i−1
2k
, i

2k

)
where i = 1, 2, ..., 2k and k = 0, 1, ...

is called a dyadic interval of order k. For n = 2k + i, i = 1, 2, ..., 2k,
k = 0, 1, ... we denote

∆n = ∆i
k =

(
i− 1

2k
,
i

2k

)
; ∆n =

[
i− 1

2k
,
i

2k

]
;

and

∆1 = ∆0
0 = (0, 1); ∆1 = [0, 1].

We also denote by zn := 2i−1
2k+1 the midpoint of the interval ∆n, n =

1, 2, ... and by R(2) the set of dyadic rational points from [0, 1]:

R(2) :=
∞⋃
k=0

Rk, where Rk :=

{
i

2k

}2k

i=0

, k = 0, 1, ...

There exist absolute constants C0 > 0 and 0 < r < 1 so that (see [12],
p. 205).

(2.6) |f̃n(x)| ≤ C0r
n|x−zn|, x ∈ [0, 1].

Using (2.6) we get

(2.7)
∑
[n]=k

|f̃n(x)| ≤ C1, x ∈ [0, 1], k = 0, 1, ...

where C1 is an absolute constant.
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For a polynomial P (x) =
M∑
n=N

anf̃n(x) and a rearrangement σ of the

set {N,N + 1, ...,M} we denote

P ∗σ (x) = sup
N≤k<M

∣∣∣∣∣
k∑

n=N

aσ(n)f̃σ(n)(x)

∣∣∣∣∣ , x ∈ [0, 1].

In the sequel we denote by C an absolute constant which can be dif-
ferent in different formulas.

The notation a � b means double inequality C1a ≤ b ≤ C2a where
C1, C2 > 0 are absolute constants.

From Lemma 1 in [5] and (2.1)− (2.3) follows

Lemma 2.1. Let 2k + 1 < n < 2k+1. There exists a point tn ∈ {n},
such that

θ

2j∫
tn

f̃n(t)dt ≥ C2−k, if {n} ⊂
[
θ − 1

2j
,
θ

2j

]
.

Now we use Lemma 2.1 to obtain a result similar to Lemma 2 of [9].

Lemma 2.2. Let Γ = {γn}∞n=0 be a decreasing sequence of positive
numbers and let the dyadic interval

∆ =

(
α− 1

2β
,
α

2β

)
⊂ (0, 1),

and the index set

Λ = {ki}mi=1 ⊂ N, β < k1 < k2 < ... < km, m ∈ N
with

(2.8)
γA
γB
≤ 2, where [2k1 , 2km+1] ⊂ [A,B],

be given. Suppose Ω = {n ∈ N : {n} ⊂ ∆, [n] ∈ Λ} := {ni}pi=1,
n1 < n2 < ... < np and let σ be a permutation of Ω satisfying

(2.9) tσ(n1) < tσ(n2) < ... < tσ(np),

where tn is determined by Lemma 1.
Then the polynomial

(2.10) P (x) :=
1

m

p∑
i=1

γσ−1(ni)

γni
f̃ni(x)

satisfies the following conditions

1)
∞∑
n=0

|cn(P )f̃n(x)| ≤ C, x ∈ [0, 1],
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2) ||P ||2 �
√
|∆|
m

,

3) σ ∈ D(P,F∞,Γ) and µ{x ∈ ∆ : P ∗σ (x) > c} > c|∆|, for some
absolute constant c ∈ (0, 1).

Proof. Since Γ is decreasing it follows from (2.10) and (2.8) that σ ∈
D(P,F∞,Γ) and

(2.11)
1

2m
≤ cn(P ) ≤ 2

m
, n ∈ spP

which together with (2.7) and (2.10) proves the first item of the Lemma.

Next, for [n] = k we have ||fn||2 = 1 and ||fn||∞ � 2
k
2 . Hence

||f̃n||2 � 2−
k
2 and the assertion 2) of Lemma 2.2 follows from (2.11)

and the equality

|{n : [n] = k, {n} ⊂ ∆}| = 2k−β, k > β.

We denote tσ(np+1) = α
2β

. Using (2.11) and Lemma 2.1 we get∫
∆

P ∗σ (x)dx ≥
∫
∆

∑
tσ(n)<x, n∈spP

cσ(n)(P )f̃σ(n)(x)dx =

p∑
i=1

tσ(ni+1)∫
tσ(ni)

∑
tσ(n)<x, n∈spP

cσ(n)(P )f̃σ(n)(x)dx =
∑
n∈spP

α

2β∫
tn

cn(P )f̃n(x)dx ≥

1

3

C

m

∑
n∈spP

2−[n] =
1

3
C|∆|.

From this estimate and the first item of Lemma 2.2 follows that there
exists an absolute constant c ∈ (0, 1) such that

µ{x ∈ ∆ : P ∗σ (x) > c} > c|∆|.

Lemma 2.2 is proved. �

Remark 2.3. Let {τn}∞n=0 be an arbitrary sequence of numbers with
2
5
≤ τn ≤ 5

2
and let Λ be as in Lemma 2.2. From the proof of Lemma

2.2 follows that the polynomial

(2.12) P (x) :=
1

m

∑
[n]∈Λ,{n}⊂∆

τnf̃n(x)

satisfies conditions 1) and 2). By Chebishev inequality we have

µ{x ∈ [0, 1] : |P (x)| > m−
1
4} ≤ C

|∆|√
m
,
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while using estimates (2.1)−(2.5) one can see that |P (x0)| > c, where x0

is the left endpoint of the interval ∆ and c > 0 is an absolute constant.

Lemma 2.4. Let Γ = {γn}∞n=0 be a decreasing sequence of positive
numbers with τ(Γ) =∞. Given dyadic interval

∆ =

(
α− 1

2β
,
α

2β

)
, 1 < α < 2β, β > 1

and numbers p0 > β, M ≥ 1, there exist an index set Λ ⊂ N of
cardinality m > M , an index set J ⊂ {n ∈ N : [n] ∈ Λ, {n} ⊂ ∆}
and a polynomial

Q(x) :=
1

m

∑
n∈J

τnf̃n(x),
2

5
≤ τn ≤

5

2
,

such that

1) min Λ > p0,
2) |Q(x)| ≤ Cm−1/4, x ∈ [0, 1],
3) #D(Q,F∞,Γ) = 1 and if σ ∈ D(Q,F∞,Γ) then

µ{x ∈ ∆ : Q∗σ(x) > c} > c|∆|,
where c ∈ (0, 1) is an absolute constant.

Proof. Observe that for sufficiently large m > M and for any index set
Λ of cardinality m with min Λ > m, by (2.6) we have

(2.13)
∑

[n]∈Λ, {n}⊂∆

|f̃n(x)| < 1, if dist(x,∆) ≥ 1

2
|∆|.

We fix {τn}∞n=1 - an arbitrary sequence of numbers satisfying

(2.14)
2

5
≤ τn ≤

5

2
, n = 1, 2, ...

For sufficiently large m > M with (2.13) and an index p > m+p0 using
(2.6) and Remark 2.3 we find pm with 1 < pm < m such that for

(2.15) Q̃(x) :=
1

m

p+pm∑
k=p+1

∑
[n]=k, {n}⊂∆

τnf̃n(x)

we have

(2.16) |Q̃(x)| ≤ m−1/4, x ∈ [0, 1],
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and there exists x0 ∈ [0, 1] such that∣∣∣∣∣∣Q̃(x0) +
1

m

∑
[n]=p+pm+1, {n}⊂∆

τnf̃n(x0)

∣∣∣∣∣∣ > m−1/4.

For i = 0, 1, ...,m− pm we inductively construct polynomials

Pi(x) :=
1

m

∑
[n]∈Λi, {n}⊂∆

τnf̃n(x),

Qi(x) :=
1

m

∑
n∈Ji

τnf̃n(x),

auxiliary sets E
′
i , such that for the sequence of numbers {εi}m−pmi=0 , with

(2.17) ε0 = m−1/4, εi+1 = εi − 2−2m,

and sets

(2.18) Ei = {x ∈ [0, 1] : |Qi(x)| > 1

2
εi}

the following properties hold:

a) Λi consists of i + pm different integers with Λi > p0 and Ji ⊂
{n ∈ N : [n] ∈ Λi, {n} ⊂ ∆},

b) max Λi+1 ≤ max Λi + C1 log2m,
c) Ei ⊂ Ei+1,
d) Ei ⊂ E

′
i ⊂ (0, 1) and µ(E

′
i \ Ei) ≤ m−2,

e)
∑

n∈spQi+1\spQi
|f̃n(x)| < 1

6
2−2m, x ∈ Ei, i < m− pm,

f)
∑

n∈spPi\spQi
|f̃n(x)| < 1

6
(i+ 1)2−2m, x ∈ [0, 1] \ (E

′
0 ∪ ... ∪ E

′
i),

g) |Qi+1(x)| ≤ m−1/4 + i2−2m, x ∈ [0, 1], i < m− pm.
For i = 0 we take Λ0 = {p + 1, p + 2, ..., p + pm}, P0 = Q0 = Q̃ where

Q̃ is defined by (2.15) and J0 = spQ0.
Suppose that for 0 ≤ k < m− pm we have constructed polynomials

Pi, Qi and hence index sets Λi, Ji, for i = 0, 1, ..., k, also sets E
′
i for

i = 0, 1, ..., k− 1 with the properties a)− g). Now we construct the set
E
′

k and polynomials Pk+1, Qk+1.
For the polynomial Qk we consider the set Ek defined by (2.18). It

follows from (2.13) that dist(Ek, {0, 1}) ≥ 1
2
|∆|. Since Qk is a continu-

ous piecewise linear function, Ek is an open set in (0, 1). We represent
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Ek as a union of intervals

Ek =

Nk⋃
j=1

(ajk, b
j
k) :=

Nk⋃
j=1

∆j,0
k

and denote max Λk := uk. From the definition of Qk and Franklin
functions we have Nk ≤ 2uk+2. Now, for j = 1, 2, ..., Nk we enlarge
each interval ∆j,0

k to the interval ∆j,1
k := (cjk, d

j
k) such that

(2.19) 0 < ajk −
m−2

4Nk

≤ cjk ≤ ajk −
m−2

8Nk

,

(2.20) bjk +
m−2

8Nk

≤ djk ≤ bjk +
m−2

4Nk

< 1.

We also choose endpoints of ∆j,1
k to be from Rk′ for some k

′
> uk.

Since Nk ≤ 2uk+2, by (2.19)− (2.20) we can take

(2.21) k
′
< uk + C1 log2m.

Let Gk be the union of enlarged intervals. From (2.19)− (2.20) follows

(2.22) Ek ⊂ Gk, Gk ⊂ (0, 1) and µ(Gk \ Ek) ≤
1

2
m−2.

Now we enlarge each interval ∆j,1
k by the same way as we did for ∆j,0

k

and denote the obtained intervals by ∆j,2
k , j = 1, 2, ..., Nk. We also

take the endpoints of each ∆j,2
k from Rk′′ for some k

′′
> k

′
, where

k
′′
< uk +C1 log2m. Now we take E

′

k =
Nk⋃
j=1

∆j,2
k and observe that after

the enlargement we have

(2.23) Gk ⊂ E
′

k, E
′
k ⊂ (0, 1) and µ(E

′

k \Gk) ≤
1

2
m−2.

It follows from the construction of Gk and E
′

k that

(2.24) min(dist(∂Gk, ∂E
′

k), dist(∂E
′

k, ∂Ek)) ≥
m−2

8Nk

≥ m−2

2uk+5
.

We take an index k1 > k
′′

and denote

gk(x) :=
1

m

∑
[n]=k1,{n}⊂∆\Gk

τnf̃n(x),

g
′

k(x) :=
1

m

∑
[n]=k1,{n}⊂∆∩Gk

τnf̃n(x).
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By (2.6) and (2.24) we can choose k1 < uk + C1 log2m so that

(2.25)
1

m

∑
n∈spgk

|f̃n(x)| < 1

6
2−2m, x ∈ Ek,

(2.26)
1

m

∑
n∈spg

′
k

|f̃n(x)| < 1

6
2−2m, x ∈ [0, 1] \ E ′k.

Now we take Λk+1 := Λk∪{k1}, Pk+1 := Pk+gk+g
′

k and Qk+1 := Qk+gk
and prove that conditions a)− g) for i = k are fulfilled.

By the induction hypothesis and definition of Λk+1 we obtain a).
From the choice of integers k

′
, k
′′

and k1 we get b). The item c) follows
from (2.18), definition of Qk+1, (2.14) and (2.25). Next, from (2.22)
and (2.23) we get d). Then, since spQk+1 = spQk ∪ spgk we get e)
from (2.25). Now observe that by the construction of Pk+1 and Qk+1

we have
spPk+1 \ spQk+1 = (spPk \ spQk) ∪ spg

′

k,

hence by the induction hypothesis and (2.26) we obtain f). Finally, by
the induction hypothesis, (2.18), (2.25) and (2.7) we obtain g).

Now applying the process described above for i = 0 we get the
validity of the statement of induction in the case i = 0.

On the last step when i = m−pm we denote N := m−pm, P := PN ,
Q := QN and Λ := ΛN and J := JN .

By f) and (2.14) for each x ∈ [0, 1] \ (E
′
0 ∪ E

′
1 ∪ ... ∪ E

′
N) we have

(2.27)
∑

n∈spP\spQ

|cn(P )f̃n(x)| ≤ 2−m.

On the other hand from c) and d) we have

µ((E
′

0 ∪ ... ∪ E
′

N) M EN) ≤ µ((E
′

0 ∪ ... ∪ E
′

N−1) \ EN) +m−2 ≤

m−2 + µ((E
′

0 ∪ ... ∪ E
′

N−1) M EN−1) ≤ ... ≤ m−1

hence

(2.28) µ(E
′

0 ∪ ... ∪ E
′

N) ≤ µ(EN) +
1

m
.

From b) follows that [spP ] ⊂ p, p+m2, if m > M is sufficiently large
and p > m + p0. Since τ(Γ) =∞, there exist integers B > A > 2m+p0

such that
B

A
> 2m

2

and
γA
γB
≤ 2.
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Hence if we start the construction of Λ from p = [log2A] + 1, we will
have spP ⊂ A,B for any sequence {τn}∞n=1 with (2.14).

Now suppose A,B = {ni}qi=1, where n1 < n2 < ... < nq. We take

(2.29) τni =
γσ−1(ni)

γni
, i = 1, 2, ..., q

where σ is a permutation of the set A,B such that

tσ(n1) < tσ(n2) < ... < tσ(nq),

and tn is determined by Lemma 2.1. From the choice of the numbers A
and B, monotonicity of the sequence Γ and (2.29) we have 1

2
≤ τn ≤ 2,

n ∈ A,B and σ ∈ D(P,F∞,Γ) ∩ D(Q,F∞,Γ). As we see, P is the
polynomial from Lemma 2.2 for the index set Λ, hence P satisfies items
2− 3 of Lemma 2.2.

Since p > p0 the first item of Lemma 2.4 is fulfilled. From g) we get
the second item of Lemma 2.4. From the second item of Lemma 2.2,
(2.28) and the Chebishev inequality we have
(2.30)

µ(E
′

0∪ ...∪E
′

N) ≤ Cm1/2||Q||22 +
1

m
≤ Cm1/2||P ||22 +

1

m
≤ C

|∆|√
m

+
1

m
.

Since P satisfies the third item of Lemma 2.2, from (2.27) and (2.30)
we get

µ{x ∈ (0, 1) : Q∗σ(x) > c} > c|∆|.
To complete the proof observe that if needed we can slightly perturb
the coefficients of P so that all the quantities |cn(P )γn| will be different
from each other and 2

5
≤ τn ≤ 5

2
, for n ∈ spP by the same time all

mentioned properties of polynomials P , Q and the permutation σ will
be preserved. Hence we can suppose that #D(Q,F∞,Γ) = 1.

Lemma 2.4 is proved. �

3. Auxiliary results. Pointwise convergence

Theorem (G. Gevorkyan, [6]). The series with respect to Franklin
system

∞∑
n=0

anfn(x)
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converges a.e. on a set E ⊂ (0, 1) of positive measure if and only if
∞∑
n=0

a2
nf

2
n(x) < +∞ a.e. on E.

Lemma 3.1. Let E ⊂ [0, 1] with µ(E) > 0 and let 0 ≤ n1 < n2 < ...

be a sequence of nonnegative integers such that
∞∑
i=0

f̃ 2
ni

(x) < +∞ a.e.

on E. Then
∞∑
i=0

|f̃ni(x)| < +∞ a.e. on E.

Proof. We use the technique from [6]. Let δ > 0. There exists a
compact set A ⊂ E such that

(3.1)
∞∑
i=0

f̃ 2
ni

(x) ≤M < +∞, x ∈ A

and

(3.2) µ(A) > µ(E)− δ.
Let {Ijk}, where k = 1, 2, ... and j ∈ {1, 2, ..., 2k}, be a family of dyadic
intervals which are defined as follows. For k = 1 we split [0, 1] into
intervals (0, 1

2
), (1

2
, 1) and denote by Ij1 those intervals for which

(3.3)
µ(Ij1 ∩ A)

µ(Ij1)
< δ.

Suppose we have chosen intervals Ijk for k = 1, 2, ..., N . We split [0, 1]

into intervals ( j−1
2N+1 ,

j
2N+1 ), j = 1, 2, ..., 2N+1 and denote by IjN+1 those

intervals which do not intersect with any Ijk for k ≤ N and

(3.4)
µ(IjN+1 ∩ A)

µ(IjN+1)
< δ.

Let B =
∞⋃
k=1

⋃
j

Ijk. Clearly [0, 1] \B ⊂ A with the exception of at most

dyadic rational points, also

(3.5) µ(E \ ([0, 1] \B)) < 2δ.

Now we denote by {n′j : j = 0, 1, ...} the subset of the numbers {ni : i =

0, 1, ...} with {n′j} ⊂ B and the rest we denote by {n′′j : j = 0, 1, ...}.
For x ∈ Ijm and k ≥ m from (2.6) we have

(3.6)
∑

[n
′′
j ]=k

f̃ 2
n
′′
j
(x) ≤ C

∑
[n
′′
j ]=k

r
n
′′
j |x−zn′′

j
|
.
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Since zn′′j
/∈ Ijm and zn′′j

takes values of the form p
2k

, from (3.6) we get

(3.7)
∑

[n
′′
j ]=k

f̃ 2
n
′′
j
(x) ≤ C

∑
q≥2kρ(x,Ij,ck0

)

rq ≤ Cr2kρ(x,Ij,ck0
), for x ∈ Ijk0 ,

where ρ(x, Ij,ck0 ) is the distance of x from the complement of Ijk0 .
From (3.7) follows∫
Ijm

∑
k≥m

∑
[n
′′
j ]=k

f̃ 2
n
′′
j
(x)dx ≤ C

∑
k≥m

∫
Ijm

r2kρ(x,Ij,cm )dx ≤ C
∑
k≥m

1∫
0

r2ktdt ≤

(3.8) C
∑
k≥m

1

2k

∞∫
0

rtdt ≤ Cµ(Ijm).

Now we show that

(3.9)

1∫
0

∑
n
′′
j

f̃ 2
n
′′
j
(x)dx < +∞.

From (3.1), (3.8) and (2.7) we obtain

1∫
0

∑
n
′′
j

f̃ 2
n
′′
j
(x)dx =

∫
[0,1]\B

∑
n
′′
j

f̃ 2
n
′′
j
(x)dx+

∫
B

∑
n
′′
j

f̃ 2
n
′′
j
(x)dx ≤

M +
∞∑
m=0

∑
i

∫
Iim

∞∑
k=0

∑
[n
′′
j ]=k

f̃ 2
n
′′
j
(x)dx ≤M

′
+ C

∞∑
m=0

∑
i

µ(I im)+

(3.10)
∞∑
m=0

∑
i

∫
Iim

m−2∑
k=0

∑
[n
′′
j ]=k

f̃ 2
n
′′
j
(x)dx.

Let J be a dyadic interval of order m− 1 which contains I im. It follows
from the definition of the intervals Ijk that

(3.11)
µ(J ∩ A)

µ(J)
≥ δ.

Denote F (x) =
m−2∑
k=0

∑
[n
′′
j ]=k

f̃ 2
n
′′
j

(x). From the definition of the functions

of the Franklin system we have that F (x) is a quadratic polynomial on
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the interval J . Now for k = [log2
8
δ
] + 1 we split J into dyadic intervals

{Ji} of the length |J |
2k

. Using (3.11) we get

(3.12) #{i : µ(A ∩ Ji) ≥
δ

2
|Ji|} ≥ 4

and by the definition of the intervals Ji we have

(3.13)
δ

16
|J | ≤ |Ji| ≤

δ

8
|J |.

From (3.12) and (3.13) follows that there exist points {ai}4
i=1 ⊂ A ∩ J

with

(3.14) ai+1 − ai ≥
δ2

32
|J |, i = 1, 2, 3,

which together with (3.1) implies

(3.15) |F ′(ci)| ≤
C

δ2

1

|J |
, i = 1, 2,

where

(3.16) c1, c2 ∈ J and |c1 − c2| ≥
δ2

32
|J |.

Since F ′(x) is linear on the interval J , from (3.15) and (3.16) we obtain

(3.17) |F ′(x)| ≤ C

δ4

1

|J |
, x ∈ J.

From (3.1), (3.11) and (3.17) we get

(3.18) |F (x)| ≤ C

δ4
, x ∈ J,

which together with (3.10) implies (3.9).

Observe that by (2.6) we have
∞∑
k=1

(|f̃ 1
k (x)|+ |f̃ 2k

k (x)|) < +∞ a.e. on

[0, 1] hence we can suppose that 2[ni] + 1 < ni < 2[ni]+1, i = 0, 1, ....

Each f̃n is piecewise linear on [0, 1], hence by (2.1)− (2.5) we have

(3.19)
1∫

0

|f̃n′′j (x)|dx ≤ C

∫
{n′′j }

|f̃n′′j (x)|dx ≤ C ′
∫
{n′′j }

|f̃n′′j (x)|2dx ≤ C ′
1∫

0

|f̃n′′j (x)|2dx.

From (3.9), (3.19) and Levi’s theorem we get
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(3.20)
∑
n
′′
j

|f̃n′′j (x)| < +∞ a.e. on [0, 1].

Let γ be a positive number. We denote by Ĩ ik the concentric interval

with I ik with µ(Ĩ ik) = (1 + 2γ)µ(I ik) and let B̃ =
∞⋃
k=0

⋃
i

Ĩ ik. Clearly

(3.21) µ(B̃) ≤ (1 + 2γ)µ(B)

Next, for fixed m and k ≥ m we have

(3.22) #{j : [n
′

j] = k, {n′j} ⊂ I im} ≤ 2kµ(I im),

hence from (2.6) and (3.22) we have

(3.23)
∑

[n
′
j ]=k, {n

′
j}⊂Iim

|f̃n′j(x)| ≤ C2kµ(I im)r2kρ(x,Iim), x /∈ I im,

where ρ(x, I im) is the distance of x from the interval I im. Using (3.23)
we get∫

[0,1]\B̃

∑
n
′
j

|f̃n′j(x)|dx =

∫
[0,1]\B̃

∞∑
m=0

∑
i

∞∑
k=0

∑
[n
′
j ]=k, {n

′
j}⊂Iim

|f̃n′j(x)|dx ≤

∞∑
m=0

∑
i

∞∑
k=m

∫
[0,1]\Ĩim

∑
[n
′
j ]=k, {n

′
j}⊂Iim

|f̃n′j(x)|dx ≤

(3.24) C
∞∑
m=0

∑
i

µ(I im)
∞∑
k=m

2k
∞∫

γ|Iim|

r2ktdt < +∞.

From (3.24) and Levi’s theorem we get∑
n
′
j

|f̃n′j(x)| < +∞ a.e. on [0, 1] \ B̃.

Since γ is arbitrary positive number we get

(3.25)
∑
n
′
j

|f̃n′j(x)| < +∞ a.e. on [0, 1] \B.
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Taking into account that δ is arbitrary from (3.25), (3.2) and (3.5) we
get

(3.26)
∑
n
′
j

|f̃n′j(x)| < +∞ a.e. on E,

which combined with (3.20) implies

∞∑
i=0

|f̃ni(x)| < +∞ a.e. on [0, 1].

Lemma 3.1 is proved. �

4. Proofs of the theorems

Proof of Theorem 1. First we prove assertion 1). Let τ(Γ) < ∞,
f ∈ C[0, 1] and let the number ε > 0 be fixed. Denote

(4.1) Tε(f)(x) :=
∑

|cn(f)γn|>ε

cn(f)f̃n(x), x ∈ [0, 1],

and
N(ε) := min{N ∈ N : |cn(f)γn| ≤ ε, ∀n > N}.

Then

(4.2) {n ∈ N : |cn(f)γn| > ε} ⊂ {1, 2, ..., N(ε)},

(4.3)
ε

γN(ε)

≤ |cN(ε)| → 0, as ε→ 0.

Using (2.7) and the monotonicity of Γ we get

||SN(ε)(f)− Tε(f)||C =

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
n≤N(ε), |cn(f)γn|≤ε

cn(f)f̃n(x)

∣∣∣∣∣∣
∣∣∣∣∣∣
C

≤

(4.4) Cε

[log2N(ε)]−1∑
k=0

1

γnk
+ C

ε

γN(ε)

,

where nk = 2k+1. If l0 := [log2 τ(Γ)]+1, then
nk+l0

nk
> τ(Γ), k = 0, 1, ..., [log2N(ε)]− l0 − 1,

which implies
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(4.5)
γnk
γnk+l0

> 2, k = 0, 1, ..., [log2N(ε)]− l0 − 1,

therefore

[log2N(ε)]−1∑
k=0

1

γnk
≤

l0−1∑
r=0

∑
k≡r(mod l0)

1

γnk
≤

(4.6)

l0−1∑
k=0

(
1

2ir
+

1

2ir−1
+ ...+ 1

)
1

γN(ε)

≤ C

γN(ε)

,

for some indices ir, r = 0, 1, ..., l0 − 1.
From (4.4), (4.6) and (4.3) follows that

||SN(ε)(f)− Tε(f)||C → 0, as ε→ 0.

Since ||f − SN(f)||C → 0, we get

(4.7) ||f − Tε(f)||C → 0, as ε→ 0.

If the set D(f,F∞,Γ) contains only one permutation, then for any
N ∈ N there exists ε = ε(N) > 0 such that GN(f) ≡ Tε(f), hence
lim
N→∞

||f −GN(f)||C = 0. In the case #D(f,F∞,Γ) > 1 for n = 0, 1, ...,

we denote
(4.8)
Ω−1 = ∅, Ωn(f) := Ωn = {k ∈ Z+\(Ω0∪...∪Ωn−1) : |γkck(f)| = |γncn(f)|},

and if Ωn 6= ∅, we denote ωn = max Ωn. Now if #Ωn > 1 using the
same ideas as we show (4.6) we will have∑

k∈Ωn

|ck(f)f̃k(x)| = |γωncωn(f)|
∑
k∈Ωn

1

γk
|f̃k(x)| ≤

(4.9) |γωncωn(f)|
ωn∑
k=0

1

γk
|f̃k(x)| ≤ C|cωn(f)|, x ∈ [0, 1],

which together with (4.7) completes the proof of the first part of The-
orem 1.4.

Now we proceed to prove assertion 2).

Let τ(Γ) = ∞. We denote {∆nj}∞j=1 := {{∆i
k}2k−1

i=2 }∞k=2 and Mj =

2−8j, j = 1, 2, ... Let Q1 be the resulting polynomial of Lemma 2.4 with
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initial conditions ∆ = ∆n1 , p0 = 1 and M = M1. We put p1 = 1 and
for j = 2, 3, ... inductively define polynomials Qj and numbers pj where

(4.10) pj = pj−1 + max spQj−1 + 1

and Qj is the resulting polynomial of Lemma 2.4 with initial conditions
∆ = ∆nj , p0 = pj and M = Mj.

Next, for k = 1, 2, ... we denote

(4.11) fk :=
∑

|∆nj |=2−k

Qj.

From the choice of the numbers Mj and the second condition of Lemma
2.4 follows

(4.12) ||fk||C ≤ C2−k.

Since #D(Qj,F∞,Γ) = 1 for j = 1, 2, ..., from (4.10) and monotonicity
of Γ we have #D(fk,F∞,Γ) = 1, for k = 1, 2, ...

We denote

f(x) :=
∞∑
k=1

fk(x), x ∈ [0, 1]

and prove that f satisfies the theorem.
First of all from (4.12) follows that f ∈ C[0, 1]. From construction

of f follows that #D(f,F∞,Γ) = 1 and if σ ∈ D(f,F∞,Γ) then

(4.13) σ|spQj ∈ D(Qj,F∞,Γ), j = 1, 2, ...

Suppose that for some E ⊂ (0, 1) with µ(E) > 0 the limit

lim
N→∞

GN(f)(x) exists if x ∈ E.

According to the Egorov theorem there exists a set E0 ⊂ E of positive
measure such that GN(f)(x) converges uniformly on E0. Take a density
point x0 ∈ E0 and denote B = {j ∈ N : x0 ∈ ∆nj}. From the definition
of density point, uniform convergence of the greedy approximants on
E0 and (4.13) follows that there exists a set B1 ⊂ B such that if j ∈ B1

then

(4.14) µ(∆nj ∩ E0) > (1− c)µ(∆nj),

and

(4.15) |(Qj)
∗
σ(x)| < c, x ∈ E0,

where c is a constant from the third item of Lemma 2.4.
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The inequalities (4.14) and (4.15) contradicts the third item of Lemma
2.4.

Theorem 1 is proved. �

Proof of Theorem 2. The necessity part obviously follows from
the first part of Theorem 1. Now we prove the sufficiency. Since the
condition f ∈ L1(0, 1) does not imply that Fourier-Franklin coefficients
of f tend to 0, the methods from the proof of Theorem 1 do not work
in this case. In order to apply the technique of Theorem 1 we adjust
the set of coefficients of f in appropriate way.

Let τ(Γ) <∞ and f ∈ L1(0, 1). We denote

A0 = ∅, An = {k ∈ Z+ \ (A1 ∪ ... ∪ An−1) : |ck(f)| ≥ 1

n
}, n = 1, 2, ...

We will consider only An with infinite cardinality. For this aim denote

ψ(n) =

{
0, if #An <∞,
n, if #An =∞ .

From the definition of ψ(n) follows that Aψ(n) is either empty or an
infinite set. Since the Fourier-Franklin series of f converges to f a.e.
on [0, 1], by Theorem A we get

∑
k∈Aψ(n)

f̃ 2
k (x) ≤ n2

∑
k∈Aψ(n)

|ck(f)f̃k(x)|2 < +∞ a.e. on [0, 1],

which together with Lemma 3.1 implies that convergence in the blocks
Aψ(n) is absolute.

Now we fix an arbitrary δ > 0 and let N0 > 1 be chosen so that
|ck(f)| < δ for any k ∈ Aψ(n) with n ≥ N0. Denote B := Z+ \ (Aψ(1) ∪
... ∪ Aψ(N0)) and

N(ε) := min{N ∈ B : |cn(f)γn| ≤ ε, ∀n > N, n ∈ B}, ε > 0.

Clearly

(4.16) {n ∈ B : |cn(f)γn| > ε} ⊂ {1, 2, ..., N(ε)},

(4.17)
ε

γN(ε)

≤ |cN(ε)(f)|.

Now we split the sums Tε(f)(x) and SN(ε)(f)(x), where Tε(f) is defined
as (4.1), into two parts in the following way:
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Tε(f)(x) =
∑

n∈B:|cn(f)γn|>ε

cn(f)f̃n(x) + Σ1,

SN(ε)(f)(x) =

N(ε)∑
n=0, n∈B

cn(f)f̃n(x) + Σ2.

We have
|Tε(f)(x)− SN(ε)(f)(x)| ≤ |Σ1 − Σ2|+∣∣∣∣∣∣
∑

n∈B: |cn(f)γn|>ε

cn(f)f̃n(x)−
N(ε)∑

n=0, n∈B

cn(f)f̃n(x)

∣∣∣∣∣∣ .
Since N0 is fixed and the convergence in the blocks Aψ(n) is absolute,
we get that the first difference tends to 0 a.e. on [0, 1] as ε → 0. By
the same methods as in the proof of the first part of Theorem 1 we get
that the second difference is less than C|cN(ε)(f)| ≤ Cδ, when ε > 0 is
sufficiently small. Since δ is arbitrary we get that Tε(f)(x) converges
to f a.e. on [0, 1] as ε→ 0.

As in the proof of the first part of Theorem 1.4 observe that if the set
D(f,F∞,Γ) contains only one permutation, then for any N ∈ N there
exists ε = ε(N) > 0 such that GN(f) ≡ Tε(f), hence lim

N→∞
GN(f)(x) =

f(x) a.e. on [0, 1]. In the case #D(f,F∞,Γ) > 1 fix m ∈ N and denote

Bm = Aψ(1) ∪ ... ∪ Aψ(m), gm = f −
∑

n∈Bm
cn(f)f̃n and let Ωn(gm) be

defined as in (4.8), n = 0, 1, 2, ... . Since the convergence in the blocks
Aψ(n) is absolute the proof completes once we observe that

lim
m→∞

lim
n→∞

sup
∑

k∈Ωn(gm)

|ck(gm)f̃k(x)| = 0 a.e. on [0, 1].

The latter follows from (4.9) and the definition of the sets Bm and
Aψ(n).

Theorem 2 is proved. �

Remark 4.1. The methods developed in the paper are applicable for
wavelet systems. For wavelet systems with the order of decay C

(1+|x|)2+ε

for some ε > 0, in [9] a function from L∞(R) was constructed such that
greedy algorithm in L∞ diverges a.e. Putting together the approach de-
veloped in Lemma 2 of [9] and our Lemmas 2.2 and 2.4 we can construct
a continuous function with the same property, if the wavelet in addition
is continuous.
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